GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2023-03-14
    Description: This work aimed to explore evaluated the effects of the increased of hydrostatic pressure on a defined bacterial community on aggregates formed from an axenic culture of marine diatoms by simulating sedimentation to the deep sea by increase of hydrostatic pressure up to 30 bar (equivalent to 3000 m water depth) against control at ambient surface pressure. Our hypothesis was that microbial colonization and community composition and thus microbial OM turnover is greatly affected by changes in hydrostatic pressure during sinking to the deep ocean.
    Keywords: Alanine; Amino acid, total hydrolysable; Amino acids; Arginine; Aspartic acid; Aspartic acid/beta-Alanine ratio; beta-Alanine; BIOACID; Biological Impacts of Ocean Acidification; Carbon, inorganic, particulate; Carbon, organic, particulate; Carbon, total; Carbon/Nitrogen ratio; Dauwe index; Experimental treatment; gamma-Aminobutyric acid; Glutamic acid; Glutamic acid/gamma-Aminobutyric acid ratio; Glycine; Histidine; Isoleucine; Leucine; Lysine; Methionine; Nitrogen, total; Ornithine; Particle concentration; pH; Phenylalanine; Ratio; Serine; Sinking velocity; Size; Threonine; Time in hours; Tyrosine; Valine
    Type: Dataset
    Format: text/tab-separated-values, 552 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Mendes, Pedro André; Thomsen, Laurenz (2012): Effects of Ocean Acidification on the Ballast of Surface Aggregates Sinking through the Twilight Zone. PLoS ONE, 7(12), e50865, https://doi.org/10.1371/journal.pone.0050865
    Publication Date: 2023-02-24
    Description: The dissolution of CaCO3 is one of the ways ocean acidification can, potentially, greatly affect the ballast of aggregates. A diminution of the ballast could reduce the settling speed of aggregates, resulting in a change in the carbon flux to the deep sea. This would mean lower amounts of more refractory organic matter reaching the ocean floor. This work aimed to determine the effect of ocean acidification on the ballast of sinking surface aggregates. Our hypothesis was that the decrease of pH will increase the dissolution of particulate inorganic carbon ballasting the aggregates, consequently reducing their settling velocity and increasing their residence time in the upper twilight zone. Using a new methodology for simulation of aggregate settling, our results suggest that future pCO2 conditions can significantly change the ballast composition of sinking aggregates. The change in aggregate composition had an effect on the size distribution of the aggregates, with a shift to smaller aggregates. A change also occurred in the settling velocity of the particles, which would lead to a higher residence time in the water column, where they could be continuously degraded. In the environment, such an effect would result in a reduction of the carbon flux to the deep-sea. This reduction would impact those benthic communities, which rely on the vertical flow of carbon as primary source of energy.
    Keywords: BIOACID; Biological Impacts of Ocean Acidification
    Type: Dataset
    Format: application/zip, 2 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-02-24
    Keywords: BIOACID; Biological Impacts of Ocean Acidification; Carbon, inorganic, particulate; Carbon, organic, particulate; Carbon dioxide, partial pressure; Experimental treatment; Sample code/label; Standard deviation
    Type: Dataset
    Format: text/tab-separated-values, 56 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2023-07-11
    Keywords: BIOACID; Biological Impacts of Ocean Acidification; Carbon dioxide, partial pressure; Sample code/label; Sinking velocity; Sinking velocity, standard deviation; Size; Size fraction; Standard deviation
    Type: Dataset
    Format: text/tab-separated-values, 364 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...