GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • PANGAEA  (4)
  • Frontiers  (1)
  • 2015-2019  (5)
  • 1
    Publikationsdatum: 2022-01-31
    Beschreibung: Future mining of polymetallic nodules in the Clarion Clipperton Zone (Northeastern Pacific) is expected to affect all benthic ecosystems. The diversity, distribution, and environmental functions of microorganisms inhabiting abyssal sediments are barely understood. To understand consequences of deep-sea mining, experimental in vitro systems needs to be established to test hypotheses on the environmental impact of mining. For this, 40 bacterial strains, belonging to proteobacteria, actinobacteria and firmicutes were isolated from deep-sea sediments and nodules sampled at depths of ≥ 4000 m. Phenotypic characterization revealed a strong inter-species and moderate intra-species variability. Determination of metal minimum inhibitory concentrations indicated the presence of acute manganese-resistant bacteria such as Rhodococcus erythropolis (228.9 mM), Loktanella cinnabarina (57.2 mM), and Dietzia maris (14.3 mM) that might be suitable systems for testing the effects of release of microbes from nodules and their interactions with sediment particles in plumes generated during mining. Comparative genomic analysis indicated the presence of manganese efflux systems relevant for future transcriptomics or proteomics approaches with environmental samples and might serve in paving the way to develop model systems including representative organisms which are currently not cultivable. Monitoring deep-sea mining activity at abyssal depth is a challenge that has to be tackled. We proposed the use of API strips as a fast on-board methodology for bacterial monitoring as an indicator for sediment plume dispersions within the water column.
    Materialart: Article , PeerReviewed
    Format: text
    Format: other
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2023-03-14
    Beschreibung: This work aimed to explore evaluated the effects of the increased of hydrostatic pressure on a defined bacterial community on aggregates formed from an axenic culture of marine diatoms by simulating sedimentation to the deep sea by increase of hydrostatic pressure up to 30 bar (equivalent to 3000 m water depth) against control at ambient surface pressure. Our hypothesis was that microbial colonization and community composition and thus microbial OM turnover is greatly affected by changes in hydrostatic pressure during sinking to the deep ocean.
    Schlagwort(e): Alanine; Amino acid, total hydrolysable; Amino acids; Arginine; Aspartic acid; Aspartic acid/beta-Alanine ratio; beta-Alanine; BIOACID; Biological Impacts of Ocean Acidification; Carbon, inorganic, particulate; Carbon, organic, particulate; Carbon, total; Carbon/Nitrogen ratio; Dauwe index; Experimental treatment; gamma-Aminobutyric acid; Glutamic acid; Glutamic acid/gamma-Aminobutyric acid ratio; Glycine; Histidine; Isoleucine; Leucine; Lysine; Methionine; Nitrogen, total; Ornithine; Particle concentration; pH; Phenylalanine; Ratio; Serine; Sinking velocity; Size; Threonine; Time in hours; Tyrosine; Valine
    Materialart: Dataset
    Format: text/tab-separated-values, 552 data points
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    facet.materialart.
    Unbekannt
    PANGAEA
    In:  Supplement to: Mendes, Pedro André; Thomsen, Laurenz (2012): Effects of Ocean Acidification on the Ballast of Surface Aggregates Sinking through the Twilight Zone. PLoS ONE, 7(12), e50865, https://doi.org/10.1371/journal.pone.0050865
    Publikationsdatum: 2023-02-24
    Beschreibung: The dissolution of CaCO3 is one of the ways ocean acidification can, potentially, greatly affect the ballast of aggregates. A diminution of the ballast could reduce the settling speed of aggregates, resulting in a change in the carbon flux to the deep sea. This would mean lower amounts of more refractory organic matter reaching the ocean floor. This work aimed to determine the effect of ocean acidification on the ballast of sinking surface aggregates. Our hypothesis was that the decrease of pH will increase the dissolution of particulate inorganic carbon ballasting the aggregates, consequently reducing their settling velocity and increasing their residence time in the upper twilight zone. Using a new methodology for simulation of aggregate settling, our results suggest that future pCO2 conditions can significantly change the ballast composition of sinking aggregates. The change in aggregate composition had an effect on the size distribution of the aggregates, with a shift to smaller aggregates. A change also occurred in the settling velocity of the particles, which would lead to a higher residence time in the water column, where they could be continuously degraded. In the environment, such an effect would result in a reduction of the carbon flux to the deep-sea. This reduction would impact those benthic communities, which rely on the vertical flow of carbon as primary source of energy.
    Schlagwort(e): BIOACID; Biological Impacts of Ocean Acidification
    Materialart: Dataset
    Format: application/zip, 2 datasets
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Publikationsdatum: 2023-02-24
    Schlagwort(e): BIOACID; Biological Impacts of Ocean Acidification; Carbon, inorganic, particulate; Carbon, organic, particulate; Carbon dioxide, partial pressure; Experimental treatment; Sample code/label; Standard deviation
    Materialart: Dataset
    Format: text/tab-separated-values, 56 data points
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Publikationsdatum: 2023-07-11
    Schlagwort(e): BIOACID; Biological Impacts of Ocean Acidification; Carbon dioxide, partial pressure; Sample code/label; Sinking velocity; Sinking velocity, standard deviation; Size; Size fraction; Standard deviation
    Materialart: Dataset
    Format: text/tab-separated-values, 364 data points
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...