GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Publikationsdatum: 2020-02-06
    Beschreibung: We report new major, trace and volatile element contents (H2O, CO2, F, S, Cl), and new Sr, Nd, Pb and He isotopes on submarine glasses from the Galapagos Archipelago from several dredging expeditions. Four groups are distinguishable on the basis of composition and geographical distribution: the Fernandina group (3He/4He 〉 22 RA), which is similar to the less degassed primitive mantle; the Sierra Negra group (enriched Pb and Sr isotopes, 3He/4He = 8–20 RA), produced by mixing the Floreana (HIMU-type) and Fernandina end-members; the Pinta group (high Δ7/4, Δ8/4 and Th/La ratios, 3He/4He = 6–9 RA), an enriched mantle (EM)-type mantle indicative of recycled material in the source; and the depleted mantle (DM) group, characterized by an isotopic composition similar to mid-ocean ridge basalts (MORB). Only a single submarine glass with the isotopic composition of the Floreana end-member has been identified in the sample suite. Degassing has significantly lowered the glass CO2 content with little effect on the H2O concentration. Volatile data for oceanic basalts reveal that CO2–H2O gas–melt equilibration at eruption depth is common in ocean island basalts (OIB) and rare in MORB, suggesting different ratios of melt transport to bubble formation and gas–melt equilibration. The Galapagos glasses range from sulfide saturated to undersaturated, and a subset of samples indicate that S degasses at pressures ≤ 400 bars. Assimilation of hydrothermally altered material affected the volatile contents of a number of samples in the groups. Once shallow-level processes have been accounted for, we evaluate the volatile contents in the different Galapagos mantle sources. Ratios between volatile and refractory elements with similar incompatibilities are used to estimate the volatile budget of the Galapagos mantle plume. Most of the glasses from the Fernandina, Sierra Negra and Pinta groups have high volatile/refractory element ratios, whereas a few pristine DM group lavas have ratios similar to those measured in MORB. The volatile/refractory element ratios are consistent with previous reports for the high 3He/4He, HIMU and MORB components. The values measured for the Pinta group, however, are higher than those found in other OIB associated with the presence of recycled material (EM-type). Our data suggest that mixing between the different mantle components is pervasive throughout the archipelago, which acts to normalize the volatile data between the groups. The Fernandina component can be modeled by a 6–20% mixture of the high 3He/4He primitive mantle component with the MORB source, assuming a two-layered mantle and using existing estimates of helium concentrations. The resulting estimated volatile content and H/C mass ratio for the high 3He/4He primitive mantle are consistent with previous estimates, but calculated C/3He ratios are lower than the canonical ratio. This indicates the following: (1) the estimates require ∼20–50 times higher C or lower 3He contents, which is difficult to reconcile with the measured volatile/refractory ratios in oceanic basalts; (2) the C/3He ratio is not constant throughout the mantle; (3) an impact erosion model, rather than a two-layered mantle model, is more consistent with the relatively constant C/3He ratios observed in oceanic basalts, although it is unclear how representative oceanic basalts are of the lower mantle. The high volatile content of the high 3He/4He component will affect mantle dynamics and melt migration during plume–ridge interaction as this component would be predicted to be less viscous than the ambient mantle. The lower viscosity material would have an enhanced vertical upwelling, which could explain the buoyancy flux of the Galapagos plume without the need for a temperature anomaly. A lower viscosity, high 3He/4He component could also provide an explanation for the lack of high 3He/4He in Galapagos Spreading Center lavas erupting in the vicinity of the Galapagos plume.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2018-01-24
    Beschreibung: Discovery of seafloor volcanism west of Buldir Volcano, the westernmost emergent volcano in the Aleutian arc, demonstrates that surface expression of active Aleutian volcanism falls below sea level just west of 175·9°E longitude, but is otherwise continuous from mainland Alaska to Kamchatka. Lavas dredged from newly discovered seafloor volcanoes up to 300 km west of Buldir have end-member geochemical characteristics that provide new insights into the role of subducted basalt as a source component in Aleutian magmas. Western Aleutian seafloor lavas define a highly calc-alkaline series with 50–70% SiO2. Most samples have Mg-numbers [Mg# = Mg/(Mg + Fe)] greater than 0·60, with higher MgO and lower FeO* compared with average Aleutian volcanic rocks at all silica contents. Common basalts and basaltic andesites in the series are primitive, with average Mg# values of 0·67 (±0·02, n = 99, 1SD), and have Sr concentrations (423 ± 29 ppm, n = 99) and La/Yb ratios (4·5 ± 0·4, n = 29) that are typical of island arc basaltic lavas. A smaller group of basaltic samples is more evolved and geochemically more enriched, with higher and more variable Sr and La/Yb (average Mg# = 0·61 ± 0·1, n = 31; Sr = 882 ± 333 ppm, n = 31; La/Yb = 9·1 ± 0·9, n = 16). None of the geochemically enriched basalts or basaltic andesites has low Y (〈15 ppm) or Yb (〈1·5 ppm), so none show the influence of residual or cumulate garnet. In contrast, most western seafloor andesites, dacites and rhyodacites have higher Sr (〉1000 ppm) and are adakitic, with strongly fractionated trace element patterns (Sr/Y = 50–350, La/Yb = 8–35, Dy/Yb = 2·0–3·5) with low relative abundances of Nb and Ta (La/Ta 〉 100), consistent with an enhanced role for residual or cumulate garnet + rutile. All western seafloor lavas have uniformly radiogenic Hf and Nd isotopes, with εNd = 9·1 ± 0·3 (n = 31) and εHf = 14·5 ± 0·6 (n = 27). Lead isotopes are variable and decrease with increasing SiO2 from basalts with 206Pb/204Pb = 18·51 ± 0·05 (n = 11) to dacites and rhyodacites with 206Pb/204Pb = 18·43 ± 0·04 (n = 18). Western seafloor lavas form a steep trend in 207Pb/204Pb–206Pb/204Pb space, and are collinear with lavas from emergent Aleutian volcanoes, which mostly have 206Pb/204Pb 〉 18·6 and 207Pb/204Pb 〉 15·52. High MgO and Mg# relative to silica, flat to decreasing abundances of incompatible elements, and decreasing Pb isotope ratios with increasing SiO2 rule out an origin for the dacites and rhyodacites by fractional crystallization. The physical setting of some samples (erupted through Bering Sea oceanic lithosphere) rules out an origin for their garnet + rutile trace element signature by melting in the deep crust. Adakitic trace element patterns in the dacites and rhyodacites are therefore interpreted as the product of melting of mid-ocean ridge basalt (MORB) eclogite in the subducting oceanic crust. Western seafloor andesites, dacites and rhyodacites define a geochemical end-member that is isotopically like MORB, with strongly fractionated Ta/Hf, Ta/Nd, Ce/Pb, Yb/Nd and Sr/Y. This eclogite component appears to be present in lavas throughout the arc. Mass-balance modeling indicates that it may contribute 36–50% of the light rare earth elements and 18% of the Hf that is present in Aleutian volcanic rocks. Close juxtaposition of high-Mg# basalt, andesite and dacite implies widely variable temperatures in the western Aleutian mantle wedge. A conceptual model explaining this shows interaction of hydrous eclogite melts with mantle peridotite to produce buoyant diapirs of pyroxenite and pyroxenite melt. These diapirs reach the base of the crust and feed surface volcanism in the western Aleutians, but are diluted by extensive melting in a hotter mantle wedge in the eastern part of the arc.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2017-11-14
    Beschreibung: The aseismic Cocos and Carnegie Ridges, two prominent bathymetric features in the eastern Pacific, record ∼20 Myr of interaction between the Galápagos hotspot and the adjacent Galápagos Spreading Center. Trace element data determined by inductively coupled plasma-mass spectrometry in 〉90 dredged seamount lavas are used to estimate melt generation conditions and mantle source compositions along the ridges. Lavas from seamount provinces on the Cocos Ridge are alkalic and more enriched in incompatible trace elements than any in the Galápagos archipelago today. The seamount lavas are effectively modeled as small degree melts of a Galápagos plume source. Their eruption immediately follows the failure of a rift zone at each seamount province's location. Thus the anomalously young alkalic lavas of the Cocos Ridge, including Cocos Island, are probably caused by post-abandonment volcanism following either a ridge jump or rift failure, and not the direct activity of the Galápagos plume. The seamounts have plume-like signatures because they tap underlying mantle previously infused with Galápagos plume material. Whereas plume heterogeneities appear to be long-lived, tectonic rearrangements of the ridge plate boundary may be the dominant factor in controlling regional eruptive behavior and compositional variations.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...