GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    Nature Research
    In:  Nature Communications, 8 (1). Art.Nr. 1015.
    Publication Date: 2020-02-06
    Description: Changes in tropical zonal atmospheric (Walker) circulation induce shifts in rainfall patterns along with devastating floods and severe droughts that dramatically impact the lives of millions of people. Historical records and observations of the Walker circulation over the 20th century disagree on the sign of change and therefore, longer climate records are necessary to better project tropical circulation changes in response to global warming. Here we examine proxies for thermocline depth and rainfall in the eastern tropical Indian Ocean during the globally colder Last Glacial Maximum (19–23 thousand years ago) and for the past 3000 years. We show that increased thermocline depth and rainfall indicate a stronger-than-today Walker circulation during the Last Glacial Maximum, which is supported by an ensemble of climate simulations. Our findings underscore the sensitivity of tropical circulation to temperature change and provide evidence for a further weakening of the Walker circulation in response to greenhouse warming.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2004. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Paleoceanography 19 (2004): PA4029, doi:10.1029/2003PA000892.
    Description: We compare a new mid-Pleistocene sea surface temperature (SST) record from the eastern tropical Atlantic to changes in continental ice volume, orbital insolation, Atlantic deepwater ventilation, and Southern Ocean front positions to resolve forcing mechanisms of tropical Atlantic SST during the mid-Pleistocene transition (MPT). At the onset of the MPT, a strong tropical cooling occurred. The change from a obliquity- to a eccentricity-dominated cyclicity in the tropical SST took place at about 650 kyr BP. In orbital cycles, tropical SST changes significantly preceded continental ice-volume changes but were in phase with movements of Southern Ocean fronts. After the onset of large-amplitude 100-kyr variations, additional late glacial warming in the eastern tropical Atlantic was caused by enhanced return flow of warm waters from the western Atlantic driven by strong trade winds. Pronounced 80-kyr variations in tropical SST occurred during the MPT, in phase with and likely directly forced by transitional continental ice-volume variations. During the MPT, a prominent anomalous long-term tropical warming occurred, likely generated by extremely northward displaced Southern Ocean fronts. While the overall pattern of global climate variability during the MPT was determined by changes in mean state and frequency of continental ice volume variations, tropical Atlantic SST variations were primarily driven by early changes in Subantarctic sea-ice extent and coupled Southern Ocean frontal positions.
    Description: The Dutch scientific funding organization (NWO) is thanked for financial support (project 75019617).
    Keywords: Sea surface temperatures ; Mid-Pleistocene transition ; Tropical Atlantic
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Springer
    In:  EPIC3Integrated Analysis of Interglacial Climate Dynamics (INTERDYNAMIC), (SpringerBriefs in Earth System Sciences), Heidelberg, Springer, 139 p., pp. 109-114, ISBN: 978-3-319-00692-5, ISSN: 2191-589X
    Publication Date: 2015-02-04
    Description: To achieve a better understanding of the hydrologic evolution of the North-West (NW) African monsoon system during the Holocene, in particular during inferred abrupt climate changes at the end of the African Humid Period (AHP), we investigated terrigenous plant lipids deposited in marine sediments offshore NW Africa. Changes in rainfall amount were estimated by compound-specific hydrogen isotope (δD) analyses. The spatial gradient of rainfall isotopic compositions is reflected in marine surface sediments. δD changes in plant waxes covering the last 100 years confirm the observed decrease in rainfall during the late twentieth century Sahel drought, and thus can be used for a quantitative calibration of δD and pre- cipitation. δD changes in sedimentary plant waxes show no abrupt change at the end of the AHP suggesting a gradual precipitation decline. These results are supported by Holocene climate simulations using a coupled atmosphere-land surface model, which includes an explicit modeling of isotopic fractionation within the hydrological cycle.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Inbook , peerRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2005. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Paleoceanography 20 (2005): PA1019, doi:10.1029/2005PA001134.
    Keywords: Sea-surface temperatures ; Mid-Pleistocene transition ; Tropical Atlantic
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...