GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2015. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 120 (2015): 6492–6507, doi:10.1002/2014JC010198.
    Description: We present the horizontal kinetic energy (KE) balance of near-inertial currents in the mixed layer and explain shear evolution in the transition layer using observations from a mooring at 15.26° N in the Arabian Sea during the southwest monsoon. The highly sheared and stratified transition layer at the mixed-layer base varies between 5 m and 35 m and correlates negatively with the wind stress. Results from the mixed layer near-inertial KE (NIKE) balance suggest that wind energy at times can energize the transition layer and at other times is fully utilized within the mixed layer. A simple two layer model is utilized to study the shear evolution in the transition layer and shown to match well with observations. The shear production in this model arises from alignment of wind stress and shear. Although the winds are unidirectional during the monsoon, the shear in the transition layer is predominantly near-inertial. The near-inertial shear bursts in the observations show the same phasing and magnitude at near-inertial frequencies as the wind-shear alignment term.
    Description: NASA Grant Number: NNX12AD47G, NSF Grant Number: 0928138, ONR Grant Numbers: N00014-11-1-0429 and N00014-10-1-0273, NSF Grant Number: OCE-0745508
    Description: 2016-03-26
    Keywords: Near inertial energy ; Transition layer ; Near inertial shear
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: © The Author(s), 2018. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Geophysical Research Letters 45 (2018): 1923–1929, doi:10.1002/2017GL076662.
    Description: Recent evidence from mooring data in the equatorial Atlantic reveals that semiannual and longer time scale ocean current variability is close to being resonant with equatorial basin modes. Here we show that intraseasonal variability, with time scales of tens of days, provides the energy to maintain these resonant basin modes against dissipation. The mechanism is analogous to that by which storm systems in the atmosphere act to maintain the atmospheric jet stream. We demonstrate the mechanism using an idealized model setup that exhibits equatorial deep jets. The results are supported by direct analysis of available mooring data from the equatorial Atlantic Ocean covering a depth range of several thousand meters. The analysis of the mooring data suggests that the same mechanism also helps maintain the seasonal variability.
    Description: This study was supported by the Deutsche Forschungsgemeinschaft as part of the Sonderforschungsbereich 754 “Climate‐Biogeochemistry Interactions in the Tropical Ocean” and through several research cruises with RV Meteor, RV Maria S. Merian, and RV L'Atalante, by the German Federal Ministry of Education and Research as part of the cooperative projects RACE (03F0605B), SACUS (03G0837A), and MiKlip2 (ATMOS‐MODINI; 01LP1517D) and by the European Union 7th Framework Programme (FP7 2007–2013) under grant agreement 603521 PREFACE project. Support for the moored observations was additionally provided by the U.S. National Science Foundation.
    Keywords: Equatorial deep jets ; Seasonal cycle ; Momentum flux convergence ; Tropical instability waves ; Equatorial basin mode resonance
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2014. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 119 (2014): 8162–8176, doi:10.1002/2014JC010256.
    Description: The surface layer of the southeast Pacific Ocean (SEP) requires an input of cold, fresh water to balance heat gain, and evaporation from air-sea fluxes. Models typically fail to reproduce the cool sea surface temperatures (SST) of the SEP, limiting our ability to understand the variability of this climatically important region. We estimate the annual heat budget of the SEP for the period 2004–2009, using data from the upper 250 m of the Stratus mooring, located at 85°W 20°S, and from Argo floats. The surface buoy measures meteorological conditions and air-sea fluxes; the mooring line is heavily instrumented, measuring temperature, salinity, and velocity at more than 15 depth levels. We use a new method for estimating the advective component of the heat budget that combines Argo profiles and mooring velocity data, allowing us to calculate monthly profiles of heat advection. Averaged over the 6 year study period, we estimate a cooling advective heat flux of −41 ± 29 W m−2, accomplished by a combination of the mean gyre circulation, Ekman transport, and eddies. This compensates for warming fluxes of 32 ± 4 W m−2 due to air-sea fluxes and 7 ± 9 W m−2 due to vertical mixing and Ekman pumping. A salinity budget exhibits a similar balance, with advection of freshwater (−60 psu m) replenishing the freshwater lost through evaporation (47 psu m) and Ekman pumping (14 psu m).
    Description: This work was supported by NOAA's Climate Program Office and by NSF grant OCE-0745508.
    Description: 2015-05-28
    Keywords: Southeast Pacific ; Heat budget ; Argo ; Stratus mooring
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2013. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 118 (2013): 4553–4569, doi:10.1002/jgrc.20360.
    Description: An extensive data set is used to examine the dynamics of diurnal warming in the upper ocean. The data set comprises more than 4700 days of measurements at five sites in the tropics and subtropics, obtained from surface moorings equipped to make comprehensive meteorological, incoming solar and infrared radiation, and high-resolution subsurface temperature (and, in some cases, velocity) measurements. The observations, which include surface warmings of up to 3.4°C, are compared with a selection of existing models of the diurnal warm layer (DWL). A simple one-layer physical model is shown to give a reasonable estimate of both the magnitude of diurnal surface warming (model-observation correlation 0.88) and the structure and temporal evolution of the DWL. Novel observations of velocity shear obtained during 346 days at one site, incorporating high-resolution (1 m) upper ocean (5–15 m) acoustic Doppler current profile measurements, are also shown to be in reasonable agreement with estimates from the physical model (daily maximum shear model-observation correlation 0.77). Physics-based improvements to the one-layer model (incorporation of rotation and freshwater terms) are discussed, though they do not provide significant improvements against the observations reported here. The simplicity and limitations of the physical model are used to discuss DWL dynamics. The physical model is shown to give better model performance under the range of forcing conditions experienced across the five sites than the more empirical models.
    Description: J.P. was supported for part of this work by a graduate exchange studentship from the Graduate School of the National Oceanography Centre, Southampton. J.T.F. was supported by NSF OCE Award 0745508, the Charles D. Hollister Fund for Assistant Scientist Support, and the John E. and Anne W. Sawyer Endowed Fund in Special Support of Scientific Staff. R.A.W. was supported by the Office of Naval Research for the deployment of the Arabian Sea surface mooring, and by the NOAA Climate Program and Climate Observation Division for the deployment of the PACS and Stratus surface moorings. J.T.F. was supported under a cooperative program between WHOI and King Abdullah University of Science and Technology (KAUST; Awards USA00001, USA00002, and KSA00011) of the Kingdom of Saudi Arabia for the deployment of the KAUST surface moorings.
    Description: 2014-03-13
    Keywords: Diurnal warm layer ; Upper ocean dynamics
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2013. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 118 (2013): 2295–2309, doi:10.1002/jgrc.20175.
    Description: A number of studies have posited that coastally generated eddies could cool the southeast Pacific Ocean (SEP) by advecting cool, upwelled waters offshore. We examine this mechanism by characterizing the upper-ocean properties of mesoscale eddies in the SEP with a variety of observations and by estimating the surface-layer eddy heat flux divergence with satellite data. Cyclonic and anticyclonic eddies observed during two cruises featured deep positive salinity anomalies along the 26.5 kg m−3isopycnal, indicating that the eddies had likely trapped and transported coastal waters offshore. The cyclonic eddies observed during the cruises were characterized by shoaling isopycnals in the upper 200 m and cool near-surface temperature anomalies, whereas the upper-ocean structure of anticyclonic eddies was more variable. Using a variety of large-scale observations, including Argo float profiles, drifter records, and satellite sea surface temperature fields, we show that, relative to mean conditions, cyclonic eddies are associated with cooler surface temperatures and that anticyclonic eddies are associated with warmer surface temperatures. Within each data set, the mean eddy surface temperature anomalies are small and of approximately equal magnitude but opposite sign. Eddy statistics drawn from satellite altimetry data reveal that cyclonic and anticyclonic eddies occur with similar frequency and have similar average radii in the SEP. A satellite-based estimate of the surface-layer eddy heat flux divergence, while large in coastal regions, is small when averaged over the SEP, suggesting that eddies do not substantially contribute to cooling the surface layer of the SEP.
    Description: This work was supported by NOAA’s Climate Program Office and by NSF Grant OCE-0745508. Microwave OI SST data are produced by Remote Sensing Systems and sponsored by National Oceanographic Partnership Program (NOPP), the NASA Earth Science Physical Oceanography Program, and the NASA MEaSUREs DISCOVER Project.
    Keywords: Southeast Pacific ; Eddies ; Upper-ocean
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2016. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 121 (2016): 1360–1376, doi:10.1002/2015JC011141.
    Description: Current dynamics across a platform reef in the Red Sea near Jeddah, Saudi Arabia, are examined using 18 months of current profile, pressure, surface wave, and wind observations. The platform reef is 700 m long, 200 m across with spatial and temporal variations in water depth over the reef ranging from 0.6 to 1.6 m. Surface waves breaking at the seaward edge of the reef cause a 2–10 cm setup of sea level that drives cross-reef currents of 5–20 cm s−1. Bottom stress is a significant component of the wave setup balance in the surf zone. Over the reef flat, where waves are not breaking, the cross-reef pressure gradient associated with wave setup is balanced by bottom stress. The quadratic drag coefficient for the depth-average flow decreases with increasing water depth from Cda = 0.17 in 0.4 m of water to Cda = 0.03 in 1.2 m of water. The observed dependence of the drag coefficient on water depth is consistent with open-channel flow theory and a hydrodynamic roughness of zo = 0.06 m. A simple one-dimensional model driven by incident surface waves and wind stress accurately reproduces the observed depth-averaged cross-reef currents and a portion of the weaker along-reef currents over the focus reef and two other Red Sea platform reefs. The model indicates the cross-reef current is wave forced and the along-reef current is partially wind forced.
    Description: This research is based on work supported by awards USA 00002 and KSA 00011 KAUST. K. Davis was supported by a WHOI Postdoctoral Fellowship. T. Farrar was partly supported by NSF grant OCE-1435665. S. Lentz was partly supported by NSF grants OCE-1332646 and OCE-1357290.
    Description: 2016-08-16
    Keywords: Red Sea ; Coral reef ; Circulation ; Waves
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2016. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 121 (2016); 693–705, doi:10.1002/2015JC011142.
    Description: The transformation of surface gravity waves across a platform reef in the Red Sea is examined using 18 months of observations and a wave transformation model developed for beaches. The platform reef is 200 m across, 700 m long, and the water depth varies from 0.3 to 1.2 m. Assuming changes in wave energy flux are due to wave breaking and bottom drag dissipation, the wave transformation model with optimal parameters characterizing the wave breaking (γm = 0.25) and bottom drag (hydrodynamic roughness zo = 0.08 m) accounts for 75%–90% of the observed wave-height variance at four sites. The observations and model indicate that wave breaking dominates the dissipation in a 20–30 m wide surf zone while bottom drag dominates the dissipation over the rest of the reef. Friction factors (drag coefficients) estimated from the observed wave energy balance range from fw = 0.5 to fw = 5 and increase as wave-orbital displacements decrease. The observed dependence on wave-orbital displacement is roughly consistent with extrapolation of an empirical relationship based on numerous laboratory studies of oscillatory flow. As a consequence of the dependence on wave-orbital displacement, wave friction factors vary temporally due to changes in water depth and incident wave heights, and spatially across the reef as the waves decay.
    Description: USA Grant Number: 00002; KSA Grant Number: 00011; King Abdullah University of Science and Technology (KAUST); NSF Grant Numbers: OCE-1435665, OCE-1332646 and OCE-1357290
    Description: 2016-07-22
    Keywords: Surface gravity waves ; Coral reef ; Friction factor ; Red Sea
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2017. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 122 (2017): 2519–2538, doi:10.1002/2016JC012331.
    Description: High horizontal-resolution (1=12:5° and 1=25°) 41-layer global simulations of the HYbrid Coordinate Ocean Model (HYCOM), forced by both atmospheric fields and the astronomical tidal potential, are used to construct global maps of sea surface height (SSH) variability. The HYCOM output is separated into steric and nonsteric and into subtidal, diurnal, semidiurnal, and supertidal frequency bands. The model SSH output is compared to two data sets that offer some geographical coverage and that also cover a wide range of frequencies—a set of 351 tide gauges that measure full SSH and a set of 14 in situ vertical profilers from which steric SSH can be calculated. Three of the global maps are of interest in planning for the upcoming Surface Water and Ocean Topography (SWOT) two-dimensional swath altimeter mission: (1) maps of the total and (2) nonstationary internal tidal signal (the latter calculated after removing the stationary internal tidal signal via harmonic analysis), with an average variance of 1:05 and 0:43 cm2, respectively, for the semidiurnal band, and (3) a map of the steric supertidal contributions, which are dominated by the internal gravity wave continuum, with an average variance of 0:15 cm2. Stationary internal tides (which are predictable), nonstationary internal tides (which will be harder to predict), and nontidal internal gravity waves (which will be very difficult to predict) may all be important sources of high-frequency ‘‘noise’’ that could mask lower frequency phenomena in SSH measurements made by the SWOT mission.
    Description: Office of Naval Research Grant Numbers: N00014-11-1-0487 , N00014-15-1-2288; NASA Earth and Space Science Grant Number: NNX16AO23H; University of Michigan; National Aeronautics and Space Administration Grant Numbers: NNX13AD95Q , NNX16AH79G; National Science Foundation Grant Number: OCE-1351837; National Aeronautics and Space Administration Grant Numbers: NNX13AE32G , NNX16AH76G , NNX13AE46G
    Description: 2017-09-28
    Keywords: Internal gravity waves ; Internal tides ; Spectral density
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2017. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 122 (2017): 7803–7821, doi:10.1002/2017JC013009.
    Description: Two global ocean models ranging in horizontal resolution from 1/12° to 1/48° are used to study the space and time scales of sea surface height (SSH) signals associated with internal gravity waves (IGWs). Frequency-horizontal wavenumber SSH spectral densities are computed over seven regions of the world ocean from two simulations of the HYbrid Coordinate Ocean Model (HYCOM) and three simulations of the Massachusetts Institute of Technology general circulation model (MITgcm). High wavenumber, high-frequency SSH variance follows the predicted IGW linear dispersion curves. The realism of high-frequency motions (〉0:87 cpd) in the models is tested through comparison of the frequency spectral density of dynamic height variance computed from the highest-resolution runs of each model (1/25° HYCOM and 1/48° MITgcm) with dynamic height variance frequency spectral density computed from nine in situ profiling instruments. These high-frequency motions are of particular interest because of their contributions to the small-scale SSH variability that will be observed on a global scale in the upcoming Surface Water and Ocean Topography (SWOT) satellite altimetry mission. The variance at supertidal frequencies can be comparable to the tidal and low-frequency variance for high wavenumbers (length scales smaller than ∼50 km), especially in the higher-resolution simulations. In the highest-resolution simulations, the high-frequency variance can be greater than the low-frequency variance at these scales.
    Description: National Aeronautics and Space Administration (NASA) Earth and Space Science Fellowship Grant Number: NNX16AO23H Margaret and Herman Sokol Faculty; Office of Naval Research (ONR) Grant Numbers: N00014-15-1-2288 , N00014-11-1-0487; National Science Foundation (NSF) Grant Numbers: OCE-0968783 , OCE-1351837 , NNX13AE32G , NNX16AH76G , NNX13AE46 , NNX13AD95Q , NNX16AH79G
    Description: 2018-04-10
    Keywords: Internal gravity waves ; Internal tides ; Sea surface height variability ; High-resolution ocean models
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...