GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • INTER-RESEARCH  (3)
  • Berichte zur Polar- und Meeresforschung = Reports on polar and marine research  (1)
  • 1
    facet.materialart.
    Unknown
    INTER-RESEARCH
    In:  EPIC3Marine Ecology-Progress Series, INTER-RESEARCH, 625, pp. 41-52, ISSN: 0171-8630
    Publication Date: 2019-10-09
    Description: Environmental fluctuations can impose energetic constraints on organisms in terms of food shortage or compensation for metabolic stress. To better understand the biochemical strategies that support adaptive physiological processes in variable environments, we studied the lipid dynamics of the brown shrimp Crangon crangon and the pink shrimp Pandalus montagui by analysing their midgut glands during an annual cycle. Both species have an overlapping distribu- tion range in the southern North Sea, but differ in their habitat preferences, reproductive strate- gies, and life-history traits. C. crangon showed minor total lipid accumulation in their midgut glands, ranging between 14 and 17% of dry mass (DM), dominated by phospholipids. In contrast, P. montagui stored significantly larger amounts of total lipid (47−70% DM, mainly triacylglycer- ols) and showed a distinct seasonal cycle in lipid accumulation with a maximum in summer. Fatty acid trophic markers indicated a wide food spectrum for both species, with higher preferences of P. montagui for microalgae. In C. crangon, feeding preferences were less distinct due the low total lipid levels in the midgut gland. PCA based on fatty acid compositions of both species suggested that C. crangon has a broader dietary spectrum than P. montagui. C. crangon seems to have the capacity to use sufficient energy directly from ingested food to fuel all metabolic requirements, including multiple spawnings, without building up large lipid reserves in the midgut gland. P. montagui, in contrast, relies more on the energy storage function of the midgut gland to over- come food scarcity and to allocate lipids for reproduction.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev , info:eu-repo/semantics/article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    INTER-RESEARCH
    In:  EPIC3Diseases of Aquatic Organisms, INTER-RESEARCH, 141, ISSN: 0177-5103
    Publication Date: 2020-11-12
    Description: The brown shrimp Crangon crangon is a key component of the North Atlantic coastal food web and an important target species for the fishery economy. As the brown shrimp contains large amounts of protein and essential fatty acids, its consumption makes it a beneficial choice for humans. Commercially harvested crustaceans like C. crangon are frequently affected by bacterial shell disease, with necrotizing erosions and ulcerations of the cuticle. To determine whether shell disease influences the nutritional value of C. crangon, total protein and lipid contents, as well as fatty acid compositions of muscle tissue and hepatopancreas, together with the hepatosomatic index, were examined in healthy and affected individuals. The biochemical composition of the tissues did not differ significantly between the 2 groups. Also, the hepatosomatic index, as an indicator of energy reserves in shrimps, was similar between healthy and affected animals. Our results indicate that the nutritional value of C. crangon is not affected by shell disease, as long as it remains superficial as in the present study.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    INTER-RESEARCH
    In:  EPIC3Marine Ecology-Progress Series, INTER-RESEARCH, 602, pp. 169-181, ISSN: 0171-8630
    Publication Date: 2018-08-24
    Description: The invasive Asian shore crab Hemigrapsus sanguineus and the native European green crab Carcinus maenas share intertidal habitats along European North Atlantic shores and may compete for food. We evaluated the energy-storing capacities of the 2 species and determined their dietary preferences by means of lipid analysis and fatty acid trophic marker indices. Specimens of both sexes and various sizes were sampled in the rocky intertidal of the island of Helgoland (North Sea) in April, June, August, and October 2015. Total lipids of the midgut glands were significantly higher in H. sanguineus than in C. maenas and followed a distinct seasonal cycle in both sexes (ca. 20−50% of dry mass, DM). The lower lipid contents of C. maenas (ca. 20% of DM) remained at a similar level throughout the seasons. The seasonal differences in the females of H. sanguineus may be due to higher reproductive output and, consequently, lipid turnover, but remain unexplained in males. Trophic indices for Bacillariophyceae, Chlorophyta, and especially Phaeophyceae were higher in H. sanguineus than in C. maenas, suggesting a higher degree of herbivory of the invader. In contrast, the Rhodophyta index was higher in C. maenas. Thus, competition for food between the 2 species will probably be low in habitats rich in macroalgae. The ability of H. sanguineus to utilize mainly energy-poor algae but accumulate high-energy reserves may be an advantage for successfully establishing persistent populations in new habitats.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-10-03
    Description: The Southern Ocean, in particular the southwest Atlantic sector, is experiencing rapid environmental changes. A long-term trend of density changes of key pelagic species has been noted over the last decades: Antarctic krill populations are declining whilst salps are on the rise and shifting their distribution poleward. A similar poleward expansion is anticipated for a third key player, the hyperiid amphipod crustacean Themisto gaudichaudii, leading to an increasing overlap of the distributions of these three species. Due to major knowledge gaps in the ecology, and genetic connectivity of T. gaudichaudii, the likelihood of this shift and its consequences for the pelagic food web structure remain largely unexplored. In this context, Themisto’s genetic and trophic connectivity as well as thermal response were investigated with state-of-the-art molecular methods. Phylogeographic analyses showed genetic homogeneity between localities in the Southern Ocean and Atlantic waters combined with high degree of phenotypic plasticity enabling different lineages to thrive in regions further south. Diet analyses using DNA metabarcoding were applied to characterize regional variation in diet. These analyses showed a diet predominantly composed of krill, in particular in the Antarctic Peninsula region, showing that Themisto’s poleward range expansion can further impact the already declining krill stocks. It also unexpectedly revealed ctenophores to be an important prey, despite their reputation as “trophic dead-end”. Transcriptome analyses were used to study the thermal response of Themisto individuals from different geographic populations that were experimentally exposed to heat and cold treatments. The analysis of differentially expressed genes showed that genetic lineages differ in thermal tolerances. It also revealed a wide range of molecular mechanisms in Themisto amphipods to cope with thermal stress. These findings contribute to better predict the impact of climate-driven range shifts on the pelagic ecosystems in the Southern Ocean.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Book , peerRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...