GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2021-04-23
    Description: Increasing atmospheric CO2 concentrations are resulting in a reduction in seawater pH, with potential detrimental consequences for marine organisms. Improved efforts are required to monitor the anthropogenically driven pH decrease in the context of natural pH variations. We present here a high resolution surface water pH data set obtained in summer 2011 in North West European Shelf Seas. The aim of our paper is to demonstrate the successful deployment of the pH sensor, and discuss the carbonate chemistry dynamics of surface waters of Northwest European Shelf Seas using pH and ancillary data. The pH measurements were undertaken using spectrophotometry with a Lab-on-Chip pH sensor connected to the underway seawater supply of the ship. The main processes controlling the pH distribution along the ship's transect, and their relative importance, were determined using a statistical approach. The pH sensor allowed 10 measurements h(-1) with a precision of 0.001 pH units and a good agreement with pH calculated from a pair of discretely sampled carbonate variables dissolved inorganic carbon (DIC), total alkalinity (TA) and partial pressure of CO2 (pCO(2)) (e.g., pH(DICpCO2)). For this summer cruise, the biological activity formed the main control on the pH distribution along the cruise transect. This study highlights the importance of high quality and high resolution pH measurements for the assessment of carbonate chemistry dynamics in marine waters.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-07-27
    Description: The marine biogeochemistries of carbon and nitrogen have come under increased scrutiny because of their close involvement in climate change and coastal eutrophication. Recent studies have shown that the high-temperature combustion (HTC) technique is suitable for routine analyses of dissolved organic matter due to its good oxidation efficiency, high sensitivity, and precision. In our laboratory, a coupled HTC TOC-NCD system with a sample changer was used for the automated and simultaneous determination of dissolved organic carbon (DOC) and total dissolved nitrogen (TDN)in seawater samples. TOC control software was used for TOC instrument control, DOC data acquisition, and data analysis. TDN data acquisition and manipulation was undertaken under LabVIEW. The combined system allowed simultaneous determination of DOC and TDN in the same sample using a single injection and provided low detection limits and excellent linear ranges for both DOC and TDN. The risk of contamination has been remarkably reduced due to the minimal sample manipulation and automated analyses. The optimised system provided a reliable tool for the routine determination of DOC and TDN in marine waters. © 2005 Hindawi Publishing Corporation.
    Type: Article , PeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-07-27
    Description: An automated flow injection system for the determination of dissolved silver at ultratrace concentrations in seawater, and controlled under Lab VIEW™, is described. The flow injection system allows online processing of seawater samples before their analysis using a magnetic sector inductively coupled plasma mass spectrometry (MS-ICP-MS) instrument. Samples were analysed with a minimum amount of manipulation, thereby reducing the risk of contamination. In addition, the flow injection approach with incorporation of an anion exchange minicolumn allowed ready removal of analytical interferences caused by the saline matrix. The software allowed full control of all flow injection components (valves and pumps) and removed manual time control and, therefore, operator errors. The optimized system was capable of five sample injections per h, including preconcentration and wash steps. The limit of detection was 0.5 pM for a 240-s sample load time, which allowed the determination of dissolved silver in open ocean waters, where picomolar concentration levels are typically encountered.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-07-27
    Description: A flow-injection (FI)-based instrument under Lab VIEW control for monitoring iron in marine waters is described. The instrument incorporates a miniature, low-power photomultiplier tube (PMT), and a number of microelectric and solenoid actuated valves and peristaltic pumps. The software allows full control of all flow injection components and processing of the data from the PMT. The optimised system is capable of 20 injections per hour, including preconcentration and wash steps. The detection limit (3 sd of the blank) is 21 pM at sea and the linear range is 21-2000 pM with a 60-second sample load time. Typical precision between replicate FI peaks is 5.9 ± 3.2 (n = 4) over the linear range. © 2005 Hindawi Publishing Corporation.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2020-07-27
    Description: The paper describes an integrated luminometer able to perform fluorescence (FL), room temperature phosphorescence (RTP) and chemiluminescence (CL) measurements on seawater samples. The technical details of the instrumentation are presented together with flow injection (FI) manifolds for the determination of cadmium and zinc (by FL), lead (RTP) and cobalt (CL). The analytical figures of merit are given for each mainfold and results are presented for the determination of the four trace metals in seawater reference materials (NASS-5, SLEW-2) and Scheldt estuarine water samples.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-01-31
    Description: Charge-coupled device (CCD) spectrometers are widely used as detectors in analytical laboratory instruments and as sensors for in situ optical measurements. However, as the applications become more complex, the physical and electronic limits of the CCD spectrometers may restrict their applicability. The errors due to dark currents, temperature variations, and blooming can be readily corrected. However, a correction for uncertainty of integration time and wavelength calibration is typically lacking in most devices, and detector non-linearity may distort the signal by up to 5% for some measurements. Here, we propose a simple correction method to compensate for non-linearity errors in optical measurements where compact CCD spectrometers are used. The results indicate that the error due to the non-linearity of a spectrometer can be reduced from several hundred counts to about 40 counts if the proposed correction function is applied.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2024-02-07
    Description: Autonomous on-site monitoring of orthophosphate (PO43−), an important nutrient for primary production in natural waters, is urgently needed. Here, we report on the development and validation of an on-site autonomous electrochemical analyzer for PO43− in seawater. The approach is based on the use of flow injection analysis in conjunction with a dual electrochemical cell (i.e., a bi-potentiostat detector (FIA-DECD) that uses two working electrodes sharing the same reference and counter electrode. The two working electrodes are used (molybdate/carbon paste electrode (CPE) and CPE) to correct for matrix effects. Optimization of squarewave voltammetry parameters (including step potential, amplitude, and frequency) was undertaken to enhance analytical sensitivity. Possible interferences from non-ionic surfactants and humic acid were investigated. The limit of quantification in artificial seawater (30 g/L NaCl, pH 0.8) was 0.014 µM for a linear concentration range of 0.02–3 µM. The system used a Python script for operation and data processing. The analyzer was tested for ship-board PO43- determination during a four-day research cruise in the North Sea. The analyzer successfully measured 34 samples and achieved a good correlation (Pearson’ R = 0.91) with discretely collected water samples analyzed using a laboratory-based colorimetric reference analyzer.
    Type: Article , PeerReviewed
    Format: text
    Format: archive
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2024-02-07
    Description: Accurate, on-site determinations of macronutrients (phosphate (PO43−), nitrate (NO3−), and silicic acid (H4SiO4)) in seawater in real time are essential to obtain information on their distribution, flux, and role in marine biogeochemical cycles. The development of robust sensors for long-term on-site analysis of macronutrients in seawater is a great challenge. Here, we present improvements of a commercial automated sensor for nutrients (including PO43−, H4SiO4, and NO2− plus NO3−), suitable for a variety of aquatic environments. The sensor uses the phosphomolybdate blue method for PO43−, the silicomolybdate blue method for H4SiO4 and the Griess reagent method for NO2−, modified with vanadium chloride as reducing agent for the determination of NO3−. Here, we report the optimization of analytical conditions, including reaction time for PO43− analysis, complexation time for H4SiO4 analysis, and analyte to reagent ratio for NO3− analysis. The instrument showed wide linear ranges, from 0.2 to 100 μM PO43−, between 0.2 and 100 μM H4SiO4, from 0.5 to 100 μM NO3−, and between 0.4 and 100 μM NO2−, with detection limits of 0.18 μM, 0.15 μM, 0.45 μM, and 0.35 μM for PO43−, H4SiO4, NO3−, and NO2−, respectively. The analyzer showed good precision with a relative standard deviation of 8.9% for PO43−, 4.8% for H4SiO4, and 7.4% for NO2− plus NO3− during routine analysis of certified reference materials (KANSO, Japan). The analyzer performed well in the field during a 46-day deployment on a pontoon in the Kiel Fjord (located in the southwestern Baltic Sea), with a water supply from a depth of 1 m. The system successfully collected 443, 440, and 409 on-site data points for PO43−, Σ(NO3− + NO2−), and H4SiO4, respectively. Time series data agreed well with data obtained from the analysis of discretely collected samples using standard reference laboratory procedures and showed clear correlations with key hydrographic parameters throughout the deployment period.
    Type: Article , PeerReviewed
    Format: text
    Format: archive
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...