GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2018-06-05
    Description: Abundance, distribution, population structure, lipid content, lipid composition and reproductive and feeding activity of Rhincalanus nasutus were studied in the Gulf of Aqaba and in the northern Red Sea during RV “Meteor”-cruise M 44-2 in February/March 1999. Rhincalanus nasutus occurred in higher numbers in the Gulf of Aqaba (585 ind m−2) than in the northern Red Sea (254 ind m−2). Young developmental stages (nauplii, copepodite stages CI and CII) were absent. In the southern Gulf of Aqaba, the bulk of the population developed from stage CV to adult in the course of the 3-week study period. In contrast, immature CV stages dominated at the adjacent stations in the northern Gulf of Aqaba and in the northern Red Sea. Development was associated with the seasonal vertical migration from wintering mid-water layers and initiation of feeding starting as early as beginning of March in the southern Gulf of Aqaba. No upward migration was observed in the northern parts of the Gulf and in the northern Red Sea, where more than 90% of the females remained immature during our study. Lipids were dominated by wax esters in females and CV. The fatty acid and fatty alcohol compositions of females were very similar throughout the study region and period. Major fatty acids were 18:1(n−9), 16:1(n−7), 16:2(n−4) and 20:5(n−3). Our results support the previous reports of a seasonal dormancy of R. nasutus in the Gulf of Aqaba and suggest that the timing of vertical migration, feeding and maturation is closely coupled to the development of the spring bloom in oligotrophic subtropical waters.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-06-05
    Description: The abundance and vertical distribution of microcopepods sampled by nets with 55 μm mesh size was compared for two neighbouring but hydrographically different areas, the Gulf of Aqaba and the northernmost Red Sea, during spring 1999. The vertical structure of the total microcopepod communities differed considerably between the two regimes: In the stratified waters of the Red Sea, calanoids outnumbered oncaeids as well as oithonids at 0–100 m, whereas oncaeids dominated in all meso- and bathypelagic layers below 100 m deep. In the unusually deep vertically mixed waters of the Gulf of Aqaba, calanoids outnumbered each of the non-calanoid taxa as deep as 250 or 350 m, whereas the oncaeid dominated deep water community was restricted to depth ranges below 400 m. Dominant non-calanoid species in both areas were Oncaea bispinosa, Paroithona pacifica, Oithona simplex, Spinoncaea ivlevi, O. tregoubovi and O. cristata. O. scottodicarloi occurred in exceptionally high numbers in the northern Gulf. Pronounced differences between the two areas were found in the vertical distribution of poecilostomatoid species. By comparing the present results with published data from the central and southern Red Sea and other tropical and warm-temperate oceanic areas, intra- and inter-oceanic differences in the structure of microcopepod communities in oligotrophic areas are discussed. The high abundance and vertically extended range of calanoid copepods during spring appears to be a specific feature of the Gulf of Aqaba, indicating an unusual vertical succession in the trophodynamic structure of the copepod fauna in this area.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Hellenic Centre for Marine Research
    In:  EPIC351st European Marine Biology Symposium, Rhodes, Greece, 2016-09-26-2016-09-30Rhodes, Greece, Hellenic Centre for Marine Research
    Publication Date: 2016-11-18
    Description: The Asian shore crab H. sanguineus first appeared at the French coast in the late 1990’s. It rapidly extended its range further north to the German Wadden Sea and recently to western Sweden. In the intertidal area, it co-occurs with the European green crab C. maenas. As the ecophysiology of H. sanguineus is virtually unknown, the physiological capacities of both species and their potential for intra-guild competition were investigated. The aim of this study was to specifically compare the energy deposition and dietary preferences of ovigerous females of both species. Females of H. sanguineus and C. maenas carrying immature or mature eggs were collected in April, June, August and October 2015 in an intertidal area of the Island of Helgoland, North Sea. Total lipid levels and fatty acid compositions were determined of both midgut glands and eggs. In H. sanguineus, total lipid levels of the midgut glands were clearly higher than those of C. maenas (40% vs. 10% dry mass, DM). Immature eggs were quite lipid-rich in both species with 30% and 25%DM, respectively, whereas in mature eggs, lipid levels decreased to ~15%DM each. A Principal Component Analysis of the fatty acid compositions of midgut glands and eggs revealed separate clusters for both species with C. maenas lipids more characterized by membrane fatty acids. In C. maenas fatty acids of midgut glands and eggs clustered together largely dominated by carnivory biomarkers. Fatty acids of midgut glands and all eggs of H. sanguineus formed separate clusters and trophic markers indicate a more herbivorous diet. Higher lipid levels and thus more pronounced energy deposition in H. sanguineus midgut glands indicate higher starvation tolerance for females, a potential competitive advantage over C. maenas. Direct food competition, however, seems negligible, as H. sanguineus prefers a more herbivorous diet than C. maenas. Deviating fatty acid compositions in H. sanguineus midgut glands and eggs suggest that this species may represent an income breeder, utilizing energy from both the midgut gland but also from dietary input. Most brachyuran crabs are capital breeders, which rely exclusively on internal reserves.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    Hellenic Centre for Marine Research
    In:  EPIC351st European Marine Biology Symposium, Rhodes, Greece, 2016-09-26-2016-09-30Rhodes, Greece, Hellenic Centre for Marine Research
    Publication Date: 2016-11-18
    Description: Biological invasions can entail major threats to marine biodiversity. Non-indigenous species may induce changes in community structure and ecosystem functioning, thereby affecting ecosystem services and human economic interest and health. Decapod brachyuran crabs are among the most invasive marine animal taxa. The originally European species Carcinus maenas and the Asian shore crab Hemigrapsus sanguineus invaded different coastal areas around the world. While their invasion history and ecology has been thoroughly investigated, physiological properties of H. sanguineus are virtually unknown. The aim of this study was to compare the metabolic energy demand of both crab species and - based on these data - to assess their potential dietary impact on the ecosystem. Respiration measurements were conducted with a flow-through system covering a temperature range naturally experienced by these crabs (5, 10, 15 and 20 °C). Both species were analyzed on the island of Helgoland in April, June and August 2015. A general linear mixed-effects model (LMM) was applied to test for the effects of species, temperature, biomass and sex on respiration rates. Overall rates increased with temperature but decreased with the mass of the crabs. Respiration rates did not differ significantly between sexes in both species. From the full model, two separated LMMs were created for either species. They allowed establishing species-specific equations for the prediction of respiration rates y (nmol d-1 g-1) for a crab of any given mass xMass (g) at any given ambient temperature xTemp (°C): ln y = 10.39 + (-0.34 * ln xMass) + (0.06 * xTemp) for C. maenas and ln y = 10.42 + (-0.39 * ln xMass) + (0.08 * xTemp) for H. sanguineus. The mass-specific respiration rates of C. maenas and H. sanguineus were quite similar. By applying the diet-dependent respiratory quotient, oxygen uptake may be used to calculate carbon uptake and metabolic energy demand either for single crabs or for entire populations of a given area. On the population level, the metabolic energy demand and thus ecosystem impact of both species depend primarily on their abundance in the field and, less so on their dietary preferences.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...