GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    facet.materialart.
    Unbekannt
    Geophysical Research Abstracts
    In:  EPIC3EGU General Assembly 2013, Vienna, 2013-04-07-2013-04-12Geophysical Research Abstracts
    Publikationsdatum: 2022-09-29
    Beschreibung: IMCOAST among a number of other initiatives investigates the modern and the late Holocene environmental de- velopment of south King George Island with a strong emphasis on Maxwell Bay and its tributary fjord Potter Cove (maximum water depth: about 200 m). In this part of the project we aim at reconstructing the modern sediment distribution in the inner part of Potter Cove using an acoustic ground discrimination system (RoxAnn) and more than136 ground-truth samples. Over the past 20 years the air temperatures in the immediate working area increased by more than 0.6 K (Schloss et al. 2012) which is less than in other parts of the West Antarctic Peninsula (WAP) but it is still in the range of the recovery of temperatures from the Little Ice Age maximum to the beginning of the 20th century. Potter Cove is a small fjord characterized by a series of moraine ridges produced by a tidewater glacier (Fourcade Glacier). Presumably, the farthest moraine is not much older than about 500 years (LIA maxi- mum), hence the sediment cover is rather thin as evidenced by high resolution seismic data. Since a few years at least the better part of the tidewater glacier retreated onto the island’s mainland. It is suggested that such a fun- damental change in the fjord’s physiography has also changed sedimentation patterns in the area. Potter Cove is characterized by silty-clayey sediments in the deeper inner parts of the cove. Sediments are coarser (fine to coarse sands and boulders) in the shallower areas; they also coarsen from the innermost basin to the mouth of the fjord. Textural structures follow the seabed morphology, i.e. small v-shaped passages through the moraine ridges. The glacier still produces large amounts of turbid melt waters that enter the cove at various places. We presume that very fine-grained sediments fall out from the meltwater plumes and are distributed by mid-depth or even bottom currents, thus suggesting an anti-estuarine circulation pattern. Older sediments that are more distal to the glacier front and sediments in shallower places (e.g. on top of the moraine ridges) become increasingly overprinted by coarser sediments from the shallow areas of the fjord. These areas are prone to wave induced winnowing effects as well as disturbances by ploughing icebergs. It can be concluded that coarsening of the fjord sediments will continue while the supply of fine-grained meltwater sediments might cease due to exhaustion of the reservoirs.
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Conference , notRev
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    facet.materialart.
    Unbekannt
    Geophysical Research Abstracts
    In:  EPIC3EGU General Assembly 2013, Vienna, 2013-04-07-2013-04-12Geophysical Research Abstracts
    Publikationsdatum: 2022-09-29
    Beschreibung: During the past decades Mg/Ca ratios have been increasingly used in order to calculate past temperature variations independent from faunal assemblages. Especially in the Fram Strait, the main pathway of heat flux to the Arctic, new temperature estimation tools are urgently needed to better understand past complex interaction of different water masses and the extent of Atlantic Water advection to the Arctic Ocean. The Holocene section of a sediment core from the western Svalbard margin has been studied at high-resolution for benthic proxy indicators to reconstruct deepwater sources and mixing in the Arctic Gateway since the last ca 10,000 years. Benthic stable isotope values and sortable silt mean grain size data are compared to a first, preliminary data set of Mg/Ca paleotemperatures established from the benthic foraminifer species Cibicidoides wuellerstorfi in the eastern Fram Strait. When compared to planktic proxy indicators, this reconstruction of past bottom water temperatures at a northernmost site allows to estimate the linkage between deepwater inflow and AW advection within the West Spitsbergen Current. Furthermore, benthic Mg/Ca temperatures can help unravelling the local impact (e.g., by brine-enriched waters) from general trends in bottom water circulation. Short-lived decreases in benthic carbon isotope values seem to correlate to cold surface water events in the area such as the 8.2 ka event. Similarly, decreases in benthic carbon isotope values in the Nordic Seas around 8 ka have been assigned to decreased bottom water ventilation possibly due to an entrainment of relatively fresh water into the thermohaline system (Bauch et al., 2001). While sluggish bottom current speeds have been found for the 8.2 ka event north of our site on the Yermak Plateau (Hass, 2002), during colder events on the Western Svalbard margin sediment data seem to anticorrelate to benthic carbon isotope data either suggesting a rather unexpected increase in bottom current velocity or an impact of brine-enriched winter waters from the fjord/trough system which might have generated increased lateral coarser-grained sediment injections (Sarnthein et al., 2003). A Late Holocene trend towards significantly higher benthic oxygen isotopes may be either related to a cooling or increasing salinity in bottom waters. Higher salinity of bottom waters may be again caused by dense water formation during winter sea-ice formation in southern and western Svalbard fjords (e.g., Quadfasel et al., 1988; Rudels et al., 2005). Bauch, H. A., H. Erlenkeuser, R. F. Spielhagen, U. Struck, J. Matthiessen, J. Thiede, and J. Heinemeier (2001a), A multiproxy reconstruction of the evolution of deep and surface waters in the subarctic Nordic seas over the last 30,000 yr, Quaternary Science Reviews, 20(4), 659-678. Hass, H. C. (2002), A method to reduce the influence of ice-rafted debris on a grain size record from northern Fram Strait, Polar Research, 21(2), 299-306. Quadfasel, D., B. Rudels, and K. Kurz (1988), Outflow of dense water from a Svalbard fjord into the Fram Strait, Deep Sea Research Part A. Oceanographic Research Papers, 35(7), 1143-1150. Rudels, B., G. Bjork, J. Nilsson, P. Winsor, I. Lake, and C. Nohr (2005), The interaction between waters from the Arctic Ocean and the Nordic Seas north of Fram Strait and along the East Greenland Current: results from the Arctic Ocean-02 Oden expedition, Journal of Marine Systems, 55(1-2), 1-30. Sarnthein, M., S. van Krefeldt, H. Erlenkeuser, P. M. Grootes, M. Kucera, U. Pflaumann, and M. Schulz (2003), Centennial-to-millennial-scale periodicities of Holocene climate and sediment injections off the western Barents shelf, 75◦N, Boreas, 32, 447-461.
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Conference , notRev
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    facet.materialart.
    Unbekannt
    Geophysical Research Abstracts
    In:  EPIC3EGU General Assembly 2017, Vienna, Austria, 2017-04-23-2017-04-28Geophysical Research Abstracts
    Publikationsdatum: 2022-09-29
    Beschreibung: Climate fluctuations of the past two millennia such as the Little Ice Age and the Medieval Warm Period are reported mainly from the Northern Hemisphere. Evidence from Antarctica is comparably sparse and reveals regional and temporal differences, which are particularly evident at the western and eastern sides of the Antarctic Peninsula. High-resolution coastal-marine sediment cores from the northernmost tip of the West Antarctic Peninsula reveal periods dominated by finer sediments between periods that lack the finer sediment component. In Maxwell Bay this fine sediment (grain size mode around 16 μm) has been traced back to sediment related to the occurrence of glacial meltwater. It was found in sheltered places and meltwater creeks of Potter Cove, a small tributary fjord to Maxwell Bay. In the sediment core this sediment occurs predominantly between 600 and 1250 AD (Medieval Warm Period) whereas it is only sparsely affecting the record between 1450 and 1900 AD (Little Ice Age). The temporal pattern is very similar to global-temperature reconstructions and even resembles temperature reconstructions from the Northern Hemisphere. To avoid local effects that may occur in Maxwell Bay more sediment cores were taken from bays and straits further south of King George Island during Cruise PS97 of RV “Polarstern” in 2016. A core from English Strait reveals completely different sedimentary conditions with no detectable meltwater signal (16 μm). However, the mean grain size record resembles that of the cores from Maxwell Bay. The lack of a clear-cut meltwater sediment class as it occurs further north is likely the result of a much smaller hinterland (Greenwich and Robert islands) when compared to Maxwell Bay between Nelson Island and the much bigger King George Island where glaciers and ice sheets discharge large quantities of very turbid meltwater directly into the bay. It is concluded that during the warmer climate periods a large amount of meltwa- ter was released along the NW Antarctic Peninsula. The related plume sediments were distributed downstream to overprint coastal sediments even though the amount was likely not sufficient to produce a discrete sediment class.
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Conference , notRev
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    facet.materialart.
    Unbekannt
    Geophysical Research Abstracts
    In:  EPIC3EGU General Assembly 2013, Vienna, 2013-04-07-2013-04-12Geophysical Research Abstracts
    Publikationsdatum: 2022-09-29
    Beschreibung: Swath-bathymetry, high-resolution seismics and lithological data from the Wijdefjorden-Austfjorden fjord system, the largest fjord system on northern Spitsbergen, have been analysed. The data indicate that multiple halts and/or readvances during the deglaciation of the study area at the end of the last glacial occurred. However, even though the study area and several west Spitsbergen fjords are fed by the same glacier source (the ice field Lomonosovfonna), the final deglaciation of Wijdefjorden-Austfjorden took place after 9300 cal. years BP, i.e. at least approx. 2000 years later than in the west. It is suggested that the retarded deglaciation of the study area is mainly related to the fjord bathymetry, i.e. a more than 35 km wide and up to 60 m high plateau in the central parts of the study area (approx. 45 km beyond the present fjord head). Multiple, relatively large and partly stacked moraine ridges and sediment wedges are suggested to reflect that the ice front retreated slowly across this shallow area and that repeated readvances occurred. The absence of larger sediment wedges in the deeper parts between the shallow area and the fjord head may indicate that the final retreat occurred rapidly.
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Conference , notRev
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    facet.materialart.
    Unbekannt
    Geophysical Research Abstracts
    In:  EPIC3EGU General Assembly 2013, Vienna, 2013-04-07-2013-04-12Geophysical Research Abstracts
    Publikationsdatum: 2022-09-29
    Beschreibung: Swath bathymetry and seismic data reveal two slide scars providing evidence for large-scale mass-wasting on the continental slope off northwest Spitsbergen. The largest scar is approx. 35 km long, at least 16 km wide and located between 1300 and 3000 m water depth. The failure is assumed to be of a retrogressive nature, because it affected multiple stratigraphic levels up to at least 200 ms two-way-travel time (approx. 150 m) below the present seafloor. The second largest slope failure affected an area of at least 35 km length, up to 7 km width and 70 ms (approx. 55 m) thickness below 1400 m water depth. It cuts into the south-eastern sidewall of the largest scar between 2700 and 2800 m water depth and deposition of sediment lobes within the largest scar occurred. The bathymetry within this slide scar is relatively smooth compared to the largest scar, but single blocks are visible. These observations suggest a retrogressive configuration of this slide, too. Minor failures along the side walls occur. Both slide scars are filled in with approx. 15 m of acoustically stratified sediments, suggesting that the slope failures occurred almost synchronously. However, the sediment lobes beyond the lower limit of the second largest slide scar suggest that this slide occurred after the largest slide. The slides were most probably triggered by seismic activity leading to failure within contouritic sediments.
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Conference , notRev
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    facet.materialart.
    Unbekannt
    Geophysical Research Abstracts
    In:  EPIC3EGU General Assembly 2013, Vienna, 2013-04-07-2013-04-12Geophysical Research Abstracts
    Publikationsdatum: 2022-09-29
    Beschreibung: The Western Antarctic Peninsula experiences a temperature increase that is higher than in other parts of Antarctica. Within the last 50 years the tidewater glaciers in the tributary fjords of Maxwell Bay (King George Island) have retreated landwards with increasing speed. Meltwaters mobilize fine-grained sediments and transport those in plumes out of the coves into Maxwell Bay. Our hypothesis is that meltwater sediments characterize warmer climate periods of the Holocene. Marine sediment cores recovered along a profile of the eastern slope of Maxwell Bay were studied. The cores were taken in high-accumulation areas at the entrances of Collins Harbor, Marian and Potter coves. We measured the grain-size distribution in 1-cm steps in each core with a Laser diffraction particle analyzer (range 0.04–2500 μm) in order to resolve shifts in grain size compositions in very high resolution. We undertook different approaches for reliable age determination of the sediments. Since marine biogenic carbonate suitable for radiocarbon age determination is sparse, radiocarbon dating of the extracted humic acid fraction of the bulk sediment was included. Unfortunately, these age determinations turned out to be not reliable, likely because they are overprinted by an unknown older radiocarbon source. Preliminary results suggest that the cores cover approximately the last 2000 years. The magnetic susceptibility (MS) parameter fluctuates throughout the cores. It is negatively correlated to the amount of total organic carbon (TOC) and biogenic opal, suggesting dilution of the MS signal through higher input of organic material. Together with the bathymetry data, sub-bottom profiles reveal information on the interior of the topography and the geometry of the deposited sediments. The profiles obtained in Potter Cove show almost no sediment penetration suggesting either a very thin sediment cover and/or highly reworked unsorted sediments. The sub-bottom profiles from Maxwell Bay penetrate approximately 30 m beneath seafloor and show clearly stratified sediment layers in water depths 〉250 m. In conclusion we observe fluctuations in grain size, MS, TOC and biogenic opal that are most likely the result of tidewater glacier and ice sheet dynamics, the presence or absence of meltwater sediments and the variations in bioproductivity. Thus the cores reveal the history of climate-controlled sedimentation in Maxwell Bay including the history of deglaciation from adjacent coves of the upper Holocene.
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Conference , notRev
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    facet.materialart.
    Unbekannt
    Geophysical Research Abstracts
    In:  EPIC3EGU General Assembly 2013, Vienna, 2013-04-07-2013-04-12Geophysical Research Abstracts
    Publikationsdatum: 2022-09-29
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Conference , notRev
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    facet.materialart.
    Unbekannt
    Geophysical Research Abstracts
    In:  EPIC3EGU General Assembly 2013, Vienna, 2013-04-07-2013-04-12Geophysical Research Abstracts
    Publikationsdatum: 2022-09-29
    Beschreibung: Hydroacoustic seafloor mapping is a reliable and cost-effective method to investigate and monitor the seafloor in high spatial and temporal resolution. The results are important for the evaluation of benthic habitats and help to identify vulnerable environments that require protection. Yet, how can we overcome the problems that occur when different gear produces different results, which are evaluated by people that have different points of view and different backgrounds? These aspects form an integer part of the project WIMO ("Scientific concepts for monitoring the German Bight, SE North Sea", Subproject 1.1: “Hydroacoustic Habitat Mapping”). It aims at comparing different hydroacoustic gear, methodologies and workflows in order to work out basic routines for universal use in marine benthic habitat mapping. The project investigates a number of target areas in the German Bight (North Sea) using different sidescan sonars (SSS), acoustic seafloor-classification systems (AGDS), multibeams, and different sampling and grain-size analytical methods as well as sea-floor imaging methods. We tested different gear on different ships, on the same ship but not synchronously, and as many instruments as possible measuring at the same time on the same ship. Our results suggest that guidelines and requirements for surveys can hardly be standardized as they depend largely on the water depth, the seabed, and on the vessel and the equipment available. All of these frame conditions usually differ from survey to survey. Taking this into account, we present a reasonable workflow for time and cost-effective benthic habitat mapping and monitoring. Transect-line distances as well as monitoring frequencies, number and positioning of ground-truth samples and seabed imaging are discussed. We recommend frequency combinations and appropriate swath widths and overlaps for SSS and show a way to ground-truth lower-frequency data using high-frequency data. Acoustic ground discrimination systems are usually single-beam systems that need suitable interpolation routines. We present a workflow for on-survey visualization of hydroacoustic data using color interpolation and present a method to combine the hydroacoustic and ground-truth data sets. Eventually, we suggest a way to interpret the data in a most objective manner. The results from the coastal zone of the North Sea reveal that for scientific purposes it is mostly sufficient to maintain transect-line distances of two or three times the SSS swath width. It is suggested to build gray-scale SSS mosaics during the survey. As a general rule a classification into 20% gray-scale classes should be carried out and 5 samples per class should be taken as a minimum requirement. We recommend to apply two SSS frequencies synchronously to enable the discrimination between backscatter due to grain size and backscatter due to small bedforms. This information is also most important for the interpretation of roughness and hardness data provided by the AGDS. The synopsis of both, SSS and AGDS in combination with multibeam and ground truth data reveals the most reliable results.
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Conference , notRev
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    facet.materialart.
    Unbekannt
    Geophysical Research Abstracts
    In:  EPIC3American Geophysical Union Fall Meeting, San Francisco, 2012-12-03-2012-12-07Geophysical Research Abstracts
    Publikationsdatum: 2022-09-29
    Beschreibung: Climatic change in Antarctica is strongest over the Antarctic Peninsula where in places the annual mean temperatures increased by 0.5 K per decade through the past 60 years. The impact of this warming trend is clearly visible in the form of retreating glaciers and melting ice sheets, loss of sea ice and strong meltwater discharge into the coastal zone. While it is generally accepted that the rapidity of the present climate change bears a significant anthropogenic aspect, it is not clear whether the effects caused by the warming trend are exceptional and unprecedented or whether the reaction of the environment is similar to that of earlier climate phases such as the Medieval Warm Period (MWP) about 1,000 years ago. One of the major goals of the joint international research project IMCOAST is to investigate the strength of the recent warming trend and its impact on the marine environment of the West Antarctic Peninsula (WAP). The study we present here reveals the Upper Holocene climatic history based on high-resolution sediment cores from Maxwell Bay (King George Island, WAP) and information on the actual processes triggered or altered by the recent warming trend based on sedimentologic and hydroacoustic investigations in Potter Cove, a tributary fjord to Maxwell Bay. Long sediment cores from Maxwell Bay reveal grain-size changes that can be linked to cold and warm phases such as the Little Ice Age (LIA) and the MWP. Generally, warm phases are finer grained than cold phases as a result of longer and stronger melting processes during the warm phases. It is suggested that meltwater plumes carry fine-grained sediment out of the surrounding fjords into Maxwell Bay where it settles in suitable areas to produce sediments that have a modal value around 16 µm. This mode is largely absent in sediments deposited during e.g. the LIA. However, post LIA sediments are depleted in the 16 µm-mode sediment suggesting slightly different conditions during the last century. One reason might be that the recent warming trend is mainly characterized by winter and spring warming rather than by summer warming. Sediment distribution in Potter Cove reveals only a small sheltered patch of this very fine sediment. From the front of the glacier that retreated onto land during the past decades slightly coarser sediment is spreading out in the fjord. Data of an acoustic ground discrimination system together with sidescan-sonar data and some underwater-video ground truthing allows to identify and discriminate morphologic, sedimentologic and also habitat units that elucidate the presently active environmental processes.
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Conference , notRev
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    facet.materialart.
    Unbekannt
    Geophysical Research Abstracts
    In:  EPIC3American Geophysical Union Fall Meeting, San Francisco, 2012-12-03-2012-12-07Geophysical Research Abstracts
    Publikationsdatum: 2022-09-29
    Beschreibung: Two high-resolution sediment sequences from the Western Svalbard margin covering the last ca. 10.000 years were studied in order to derive information on the Holocene variability of heat transport to the Arctic Ocean and fluctuations in the position of the marginal ice zone. The Fram Strait, often referred to as the Arctic Gateway, is the only deep-water passage for Atlantic-derived water masses to enter the Arctic Ocean. Northward advection of relatively warm and saline Atlantic Water masses keeps the eastern Fram Strait ice-free all year and controls the Arctic Ocean’s heat budget. We investigated geochemical, micropaleontological, and sedimentological parameters with centennial to multidecadal time resolution at two sites which are located today beneath the Atlantic Water-bearing inner and outer West Spitsbergen Current. Records of planktic and benthic foraminiferal stable isotopes and planktic foraminifer assemblages clearly reveal distinct variations between climatically warmer and colder intervals throughout this period. Strong fluctuations in stable isotope data of the subpolar planktic foraminifer species Turborotalita quinqueloba infer strong variability of summer sea surface conditions probably caused by variable extent of the upper mixed layer and the sea ice margin. Planktic foraminifer fauna imply a stepwise transition from deglacial/Early Holocene to modern-like conditions. Superimposed on the generally strong heat transport to the Arctic Ocean during the Early to Mid-Holocene are repeated short-term coolings such as the 8.2 ka event. Past sea ice conditions were studied by means of the sea ice proxy IP25 and ice rafted detritus and document increasing occurrence of sea ice and/or icebergs since the Mid-Holocene, culminating in the so-called ‘neoglaciation’ trend. The Late Holocene Neoglacial phase was in particular characterized by the dominance of the cold water-indicating planktic foraminifer species Neogloboquadrina pachyderma. Consistent with the decreasing solar insolation, cooler (sub-)surface conditions established after ca 5 cal ka BP most likely related to a weakening of the Atlantic Water advection and strong export of Arctic sea ice through Fram Strait.
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Conference , notRev
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...