GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • EGU  (1)
  • Geological Society of America (GSA)  (1)
Document type
Years
  • 1
    Publication Date: 2012-01-01
    Description: The southwestern Barents Sea has experienced profound erosion during the last ∼2.7 m.y. that has resulted in the development of a characteristic glacial morphology of the continental shelf and deposition of a several-kilometer-thick sediment fan along the western margin prograding into the deep sea. In the period from ca. 2.7 to 1.5 Ma, proglacial processes, including fluvial and glaciofluvial erosion, dominated. For this period, the total average erosion of the shelf was 170–230 m, the average erosion rate was 0.15–0.2 mm/yr, and the average sedimentation rates on the fan were 16–22 cm/k.y. Subglacial erosion affected an area of ∼575,000 km2 during the period from ca. 1.5 to 0.7 Ma. Total average erosion is estimated at 330–420 m for this interval, and the average erosion rate was 0.4–0.5 mm/yr. Average sedimentation rates were 50–64 cm/k.y. During the last ∼0.7 m.y., glacial erosion mainly has occurred beneath fast-flowing paleo–ice streams topographically confined to troughs (∼200,000 km2). The total average erosion is estimated at 440–530 m, average erosion rate is 0.6–0.8 mm/yr, and average sedimentation rate on the continental slope is 18–22 cm/k.y. The amount of erosion was mainly determined by the duration of the glaciations and the location, velocity, and basal properties of the ice streams. In total, glacial erosion of the troughs has been relatively high throughout the last ∼2.7 m.y. at ∼1000–1100 m. For the banks, erosion is inferred to have increased from ca. 2.7 Ma to a peak between 1.5 and 0.7 Ma. Subsequently, little erosion occurred in these areas, which implies a total of 500–650 m of erosion. Compared with other high-latitude areas, our rates are among the highest so far reported. This comparison also demonstrates that there have been large variations in the rate of sediment delivery to the glaciated continental margins.
    Print ISSN: 0016-7606
    Electronic ISSN: 1943-2674
    Topics: Geosciences
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    EGU
    In:  EPIC3EGU General Assembly 2013, 2013-04-07-2013-04-12Geophysical Research Abstracts, EGU
    Publication Date: 2022-09-29
    Description: Multi-proxy analyses of six sediment cores and analyses of swath bathymetry and chirp data were integrated to elucidate the Holocene sedimentary processes and palaeoenvironments in Smeerenburgfjorden, northwest Spits- bergen. Three basins separated by two sills define the present-day large-scale bathymetry. A transverse ridge in the innermost part of the fjord represents the Little Ice Age (LIA) maximum position of Smeerenburgbreen. Slide scars along the fjord sides and mass transport deposits in the basins indicate repeated mass wasting. Recessional moraines deposited during the last deglaciation suggest a mean annual retreat rate of 140 m/year. Another set of recessional moraines deposited between the maximum LIA position of Smeerenburgbreen and its present day ter- minus indicate a mean retreat rate of the ice front of ∼87 m/year. Strong out-fjord decreasing trends in magnetic susceptibility and Fe-content indicate that these properties are related to material originating from the Horneman- toppen granite in the catchment of Smeerenburgbreen and are, thus, useful proxies for the reconstruction of the activity of the glacier. Relatively little ice rafting, most likely related to warmer surface water conditions, occurred between 8650 and 7350 cal. years BP. Ice rafting from both sea-ice and icebergs increased around 6200 cal. years BP and peaked at ∼5200 cal. years BP, associated with a regional cooling. Smeerenburgbreen became more active around 2000 cal. years BP. It probably retreated during the Roman Warm Period (50 BC – AD 400) and advanced during the Dark Ages Cold Period (AD 400 – 800). From AD 1300 – 1500 (late Medieval Warm Period), ice rafting, sedimentation rates and productivity increased in the inner fjord. The Little Ice Age was characterised by reduced ice rafting, possibly linked to an increased sea-ice cover suppressing iceberg drift. An increase in Ice Rafted Debris (IRD) commencing around AD 1880 is suggested to represent the beginning of Smeerenburgbreen’s retreat from its LIA maximum towards its present position.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...