GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2017-04-10
    Description: A high-resolution multiparameter stratigraphy allows the identification of late Quaternary glacial and interglacial cycles in a central Arctic Ocean sediment core. Distinct sandy layers in the upper part of the otherwise fine-grained sediment core from the Lomonosov Ridge (lat 87.5°N) correlate to four major glacials since ca. 0.7 Ma. The composition of these ice-rafted terrigenous sediments points to a glaciated northern Siberia as the main source. In contrast, lithic carbonates derived from North America are also present in older sediments and indicate a northern North American glaciation since at least 2.8 Ma. We conclude that large-scale northern Siberian glaciation began much later than other Northern Hemisphere ice sheets.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-05-18
    Description: We report here the discovery of Miocene, Pliocene, and early Pleistocene shallow-marine carbonates on Mayaguana Island (southeastern Bahamas) that have so far not been observed on any other Bahamian island. Spanning more than 17 m.y., but 〈12 m thick, this stratigraphic succession only occurs along the northern coast of the island, indicating that the Mayaguana Bank underwent minor subsidence throughout the late Cenozoic and was tilted toward the south during the Quaternary. In addition to considerably extending the stratigraphic record of the Bahamas Islands, our findings demonstrate that these carbonate banks were at different elevations and subsided at different rates during the Neogene. The young age of the tilting event detected on Mayaguana further shows that parts of the southeastern margin of North America have recently undergone tectonic activity a long way from its actual boundary with the Caribbean plate.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-07-28
    Description: Early diagenetic dolomite formation in methanogenic marine sediments is enigmatic because acidifi cation by CO2, a by-product of methanogenesis, should lead to carbonate dissolution and not precipitation. However, petrographic relationships indicate that dolomite breccia layers with δ13C values of ~+15‰, recovered from the lower slope of the Peru continental margin (Ocean Drilling Program Site 1230), formed deep in the methanogenic zone during tectonic activity of a décollement. Based on radiogenic Sr isotope ratios (87Sr/86Sr 〉 0.711) and positive δ18O values (+6‰), we present evidence that the dolomite breccias mainly formed from fl uids originating from deep sedimentary units within the accretionary prism, where they interacted with continental crust and/or siliciclastic rocks of continental affi nity. Due to silicate alteration and dehydration, such fl uids are likely alkaline and thus have the potential to neutralize the acidifi cation imposed by the high dissolved CO2 concentrations. This scenario provides a potential mechanism by which dolomite formation can be induced deep in a highly active methanogenic zone.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    AGU
    In:  Reviews of Geophysics, 40 (1).
    Publication Date: 2020-06-03
    Description: The radiogenic isotope composition of dissolved trace metals in the ocean represents a set of relatively new and not yet fully exploited tracers with a large potential for oceanographic and paleoceanographic research on timescales from the present back to at least 60 Ma. The main topic of this review are those trace metals with oceanic residence times on the order of or shorter than the global mixing time of the ocean (Nd, Pb, Hf, and, in addition, Be). Their isotopic composition in the ocean has varied as a function of changes in paleocirculation, source provenances, style and intensity of weathering on the continents, as well as orogenic processes. The relative importance of these processes for each trace metal is evaluated, which is a prerequisite for reliable interpretation of their time series in terms of changes in paleocirculation or weathering inputs. This analysis of processes includes a discussion of the long-term isotopic evolution of Sr and Os, which are well mixed in the ocean and have thus not been influenced by circulation changes. The radiogenic isotope evolution of those trace metals with intermediate oceanic residence times can be used as paleoceanographic proxies to reconstruct paleocirculation and weathering inputs into the ocean. This is demonstrated by studies from different ocean basins, mainly carried out on ferromanganese crusts, which show that radiogenic trace metal isotopes provide important new insights and can complement results obtained by other well-established paleoceanographic tracers such as carbon isotopes.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-05-24
    Description: Largely continuous millennial-scale records of benthic delta O-18, Mg/Ca-based temperature, and salinity variations in bottom waters were obtained from Deep Sea Drilling Project (DSDP) Site 548 (East Atlantic continental margin near Ireland, 1250 m water depth) for the period 3.7-3.0 Ma ago. High epsilon(Nd) values of -10.7 to -9 show that this site monitored changes in Mediterranean Outflow Water (MOW) throughout the mid-Pliocene. Bottom water variability at Ocean Drilling Progam (ODP) Site 978 (Alboran Sea, 1930 m water depth) provides a complementary record of MOW composition near its West Mediterranean source. Both sites show a singular and persistent rise in bottom water salinities by 0.7-1.4 psu, and in densities by similar to 1 kg m(-3) from 3.5 to 3.3 Ma ago, which is matched by an similar to 3 degrees C increase in bottom water temperature at Site 548. This event suggests the onset of strongly enhanced deep-water convection in the Mediterranean Sea and a related increase in MOW flow as a result of major aridification in the Mediterranean source region. In harmony with model suggestions, the enhanced MOW flow has possibly intensified Upper North Atlantic Deep Water formation.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    GSA, Geological Society of America
    In:  Geology, 27 . pp. 1147-1150.
    Publication Date: 2017-09-26
    Description: Two Nd and Pb isotope time series of hydrogenous ferromanganese crusts, one from the Tehuantepec Ridge in the deep eastern equatorial Pacific and the other from Blake Plateau in the shallow northwestern Atlantic, which cover the past 7–8 m.y., show no variations coincident with the final closure of the Panama gateway, estimated as ca. 3.5 Ma. The record of the Atlantic crust located in the present-day Gulf Stream shows a shift in isotope composition from ca. 8 to 5 Ma that is explained by a diminishing supply of Pacific water. It is argued that the major restriction of water-mass exchange through the Panama gateway occurred before 5 Ma and thus cannot serve as a direct cause of the onset of Northern Hemisphere glaciation. The absence of a significant signature in the isotope records from the Pacific crust suggests that the volume of water exchanged with the Atlantic through shallow archipelagic straits of the gateway during the 3–4 m.y. prior to closure was too small to influence the radiogenic isotope composition of Pacific deep water.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-12-24
    Description: Permafrost is an Essential Climate Variable (ECV) within the Global Climate Observing System (GCOS), which is characterized by subsurface temperatures and the depth of the seasonal thaw layer. Complementing ground-based monitoring networks, the Permafrost CCI project funded by the European Space Agency (ESA) 2018-2021 will establish Earth Observation (EO) based products for the permafrost ECV spanning the last two decades. Since ground temperature and thaw depth cannot be directly observed from space-borne sensors, we will ingest a variety of satellite and reanalysis data in a ground thermal model, which allows to quantitatively characterize the changing permafrost systems in Arctic and High-Mountain areas. As recently demonstrated for the Lena River Delta in Northern Siberia, the algorithm uses remotely sensed data sets of Land Surface Temperature (LST), Snow Water Equivalent (SWE) and landcover to drive the transient permafrost model CryoGrid 2, which yields ground temperature at various depths, in addition to thaw depth. For the circumpolar CCI product, we aim for a spatial resolution between 10 and 1km, but ensemble runs will be performed for each pixel to represent the subgrid variability of snow and land cover. The performance of the transient algorithm crucially depends on the correct representation of ground properties, in particular ice and organic contents. Therefore, the project will compile a new subsurface stratigraphy product which also holds great potential for improving Earth System Model results in permafrost environments. We report on simulation runs for various permafrost regions and characterize the accuracy and ability to reproduce trends against ground-based data. Finally, we evaluate the feasibility of future “permafrost reanalysis” products, exploiting the information content of various satellite products to deliver the best possible estimate for the permafrost thermal state over a range of spatial scales.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-12-24
    Description: A Permafrost Information System (PerSys) has been setup as part of the GlobPermafrost ESA DUE GlobPermafrost project (2016-2019, www.globpermafrost.info). This includes a data catalogue as well as a WebGIS, both linked to the Pangaea repository for easy data access. The thematic products available include InSAR-based land surface deformation maps, rock glacier velocity fields, spatially distributed permafrost model outputs, land surface properties and changes, and ground-fast lake ice. Extended permafrost modelling (time series) is implemented in the new ESA CCI+ Permafrost project (2018-2021), which will provide the key for our understanding of the changes of surface features over time. Special emphasis in CCI+ Permafrost will be on the evaluation and development of land surface models to gain better understanding of the impact of climate change on permafrost and land-atmosphere exchange. Additional focus will be on documentation of kinematics from rock glaciers in several mountain regions across the world. We will present an overview on technical developments made within GlobPermafrost and demonstrate its utility and challenges for an area prone to change of permafrost features. We will focus on the central Yamal Peninsula and the unusually warm years of 2012 and 2016. Conditions of 2012 triggered widespread retrogressive thaw slumps and the development of a gas emission crater. Thaw slumps have been reactivated in 2016, the first year with extensive coverage of Sentinel-1 as well as Sentinel-2 data. We present the documentation of these developments based on InSAR subsidence, Landsat trend analyses, ground fast lake ice, Sentinel-2 landcover information as well as a time series of the first version of ground temperatures from the ESA CCI+ Permafrost project. While landcover documents the occurrence of disturbances, InSAR provides insight into soil properties and impacts of unusually warm conditions during the unfrozen period. These space-based observations have been evaluated by in situ measurements at the long-term monitoring site Vaskiny Datchi. Ground fast lake ice and ground temperature modelling results provide additional insight into interannual variability.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...