GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2020-02-06
    Description: An important tool for deep-sea temperature reconstruction is Mg/Ca paleothermometry applied to benthic foraminifera. Foraminifera of the genus Melonis appear to be promising candidates for temperature reconstructions due to their wide geographical and bathymetric distribution, and their infaunal habitat, which was suggested to reduce secondary effects from carbonate ion saturation (Δ[CO3 2−]). Here, we make substantial advances to previous calibration efforts and present new multi-lab Mg/Ca data for Melonis barleeanum and Melonis pompilioides from more than one hundred core top samples spanning in situ bottom temperatures from −1 to 16 °C, coupled with morphometric analyses of the foraminifer tests. Both species and their morphotypes seem to have a similar response of Mg/Ca to growth temperature. Compilation of new and previously published data reveals a linear dependence of temperature on Mg/Ca, with a best fit of Mg/Ca (mmol/mol) = 0.113 ± 0.005 ∗ BWT (°C) + 0.792 ± 0.036 (r2 = 0.81; n = 120; 1σ SD). Salinity, bottom water Δ[CO3 2−], and varying morphotypes have no apparent effect on the Mg/Ca-temperature relationship, but pore water Δ[CO3 2−] might have had an influence on some of the samples from the tropical Atlantic.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-09-23
    Description: Based on proxy records from western Black Sea cores, we provide a comprehensive study of climate change during the last glacial maximum and late-glacial period in the Black Sea region. For the first time we present a record of relative changes in precipitation for NW Anatolia based on variations in the terrigenous supply expressed as detrital carbonate concentration. The good correspondence between reconstructed rainfall intensity in NW Anatolia and past western Mediterranean sea surface temperatures (SSTs) implies that during the glacial period the precipitation variability was controlled, like today, by Mediterranean cyclonic disturbances. Periods of reduced precipitation correlate well with low SSTs in the Mediterranean related to Heinrich events H1 and H2. Stable oxygen isotopes and lithological and mineralogical data point to a significant modification in the dominant freshwater/sediment source concomitant to the meltwater inflow after 16.4 cal ka BP. This change implies intensification of the northern sediment source and, with other records from the Mediterranean region, consistently suggests a reorganization of the atmospheric circulation pattern affecting the hydrology of the European continent. The early deglacial northward retreat of both atmospheric and oceanic polar fronts was responsible for the warming in the Mediterranean region, leading simultaneously to more humid conditions in central and northern Europe.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-02-07
    Description: Deepwater circulation significantly changed during the last deglaciation from a shallow to a deep-reaching overturning cell. This change went along with a drawdown of isotopically light waters into the abyss and a deep ocean warming that changed deep ocean stratification from a salinity-to a temperature-controlled mode. Yet, the exact mechanisms causing these changes are still unknown. Furthermore, the long-standing idea of a complete shutdown of North Atlantic deepwater formation during Heinrich Stadial 1 (HS1) (17.5–14.6 kyr BP) remains prevalent. Here, we present a new compilation of benthic δ13C and δ18O data from the North Atlantic at high temporal resolution with consistent age models, established as part of the international PAGES working group OC3, to investigate deepwater properties in the North Atlantic. The extensive compilation, which includes 105 sediment cores, reveals different water masses during HS1. A water mass with heavy δ13C and δ18O signature occupies the Iceland Basin, whereas between 20 and 50°N, a distinct tongue of 18O depleted, 13C enriched water reaches down to 4000 m water depths. The heavy δ13C signature indicates active deepwater formation in the North Atlantic during HS1. Differences in its δ18O signature indicate either different sources or an alteration of the deepwater on its southward pathway. Based on these results, we discuss concepts of deepwater formation in the North Atlantic that help to explain the deglacial change from a salinity-driven to a temperature-driven circulation mode. Highlights • Spatial analyses of benthic δ13C and δ18O data from OC3 Atlantic compilation for HS1. • Heavy δ13C, light δ18O waters migrated into deep western North Atlantic basin during HS1. • Active deepwater formation between 30 and 60°N in the North Atlantic during HS1. • New concepts for transport of isotopically light δ18O into deep ocean. • Major contribution of North Atlantic waters to deglacial deep ocean stratification changes.
    Type: Article , PeerReviewed
    Format: text
    Format: archive
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...