GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Elsevier  (6)
  • 1
    Publication Date: 2019-09-23
    Description: Silicic Icelandic magmas are widely believed to contain low to moderate H2O content prior to degassing, and that their high explosivity mostly results from the interaction of the magmas with ice or meteoric water. Here we report the compositions of glass inclusions (SiO2=57–72 wt%, K2O=1.3–2.6 wt%) in Fe-rich olivines (Fo2–42) from the largest Holocene eruptions of Hekla volcano (H3 and H4) on Iceland, which preserved quenched melts with very high primary H2O contents (3.3–6.2 wt%). The silicic Hekla melts originate primarily by extensive (∼90%) crystal fractionation of H2O-poor (∼0.6 wt%) basalts and represent an end member in the systematics of terrestrial magmas because they originate at low fO2 (ΔQFM ∼−0.1 to −0.4) and have as high H2O contents as significantly more oxidized island-arc magmas (ΔQFM≥1). This demonstrates that H2O and ΔQFM do not correlate in silicic magmas from different tectonic settings, and that fO2, not H2O content, shows a major difference between silicic ocean-island (e.g., Icelandic) and island-arc magmas. Analysis of available experimental data suggests that high H2O activity and low fO2 expand the field of olivine stability in silicic melts. Low fO2 and low MgO content could also suppress crystallization of amphibole. On the basis of these results we propose that an anhydrous mineral assemblage bearing Fe-rich olivine in evolved volcanic and Skaergaard-type intrusive rocks does not imply low H2O in magmas prior to degassing but, in contrast to the commonly held view, is an indicator of H2O-rich silicic parental magmas crystallized at low fO2. Finally, the high H2O content in magma was a major driving force of the largest explosive eruptions of Hekla volcano and must be at least as important for driving silicic explosive volcanism on Iceland as magma–ice interaction.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-02-06
    Description: The Troodos igneous complex (Cyprus) is a ca. 90 Ma old, well preserved supra-subduction zone ophiolite. Troodos is unique in that it shows evidence of fluid-saturation throughout the complex, from its base (i.e. podiform chromitites) to its uppermost units – the upper pillow lavas (UPL). However, it is unclear what the source of dissolved water in UPL tholeiites is, with possibilities including shallow seawater infiltration, assimilation of altered Troodos oceanic crust, recycled serpentinized oceanic crust, or subducted pelagic sediments. In order to identify and characterize these components we have carried out a detailed high-resolution study on tholeiitic lavas on orbicular structures and glasses from the UPL in Troodos. Basaltic orbicules were measured for their Sr–Nd–Hf–Pb isotope compositions, and in situ for their B isotopes using LA-MC-ICP-MS. UPL orbicules display a very narrow range in ∊∊Nd and ∊∊Hf (+7 to +8 and +13 to +15, respectively) indicating melting of a depleted mantle source. Lead isotopes, specifically 207Pb/204Pb vs. 206Pb/204Pb, form a mixing array with pelagic sediments. Furthermore, high-resolution characterization of individual orbicules revealed that UPL tholeiites display strong variability in 87Sr/86Sr (0.7039–0.7060) at the outcrop scale. Samples display δ11δ11B between −8.2 (±±0.5)‰ and +5.9 (±±1.1)‰ with an average B content of ca. 5 μg/g. Contrary to expectation, altered orbicules and their associated hyaloclastite matrixes display lower δ11δ11B (down to −10‰) and higher B contents (max. 200 μg/g) when compared to fresh glass. Furthermore, the orbicules studied here show little or no evidence of interaction with seawater, which is supported by their trace element contents and isotope compositions. When all isotope systems are taken into account, UPL lavas reflect melting of a depleted mantle source that was overprinted by hydrous sediment melts, and potentially, fluid-like subduction components that in part originate from serpentinized oceanic crust. Subsequent low-temperature alteration then drove δ11δ11B to lower values coupled with increased B uptake due to its adsorption into palagonite.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-12-19
    Description: Highlights • Melt inclusions from Klyuchevskoy were homogenized at 1150 °C and PH2O=500 MPaPH2O=500 MPa. • High-P experiments can recover initial H2O and CO2 contents in dehydrated inclusions. • Isothermal (de)hydration results in linear trend of CO2 and H2O in inclusion glasses. • Parental Klyuchevskoy magmas contain ∼3800 ppm CO2 and 4–5 wt.% H2O. • At least 80% of CO2 is slab-derived in the Klyuchevskoy magmas with CO2/Nb ∼3000. Abstract Reliable evaluation of CO2 contents in parental arc magmas, which can be preserved in melt inclusions in phenocrysts, is required to verify the proposed efficiency of CO2 recycling at convergent margins. Quantification of bulk CO2 concentration in melt inclusions requires their complete homogenization. Using samples from lavas from the Bulochka vent of Klyuchevskoy Volcano (Kamchatka), we applied a novel experimental approach to homogenize and re-equilibrate naturally dehydrated (〈1 wt.% H2O) melt inclusions from high-Fo (85–91 mol.%) olivine. The experiments were performed at temperatures of 1150–1400 °C, pressures of up to 500 MPa, under dry to H2O-saturated conditions and with oxygen fugacity ranging from CCO to QFM+3.3. No homogenization was achieved at dry conditions. Complete dissolution of fluid bubbles (homogenization) in the melt inclusions was achieved at H2O pressures of 500 MPa and temperature of 1150 °C, when water content in the melt inclusions reached 4–5 wt.% H2O. The CO2 content in the homogenized inclusions is 3800±140 ppm3800±140 ppm and CO2/Nb = 3000 ± 420, which are the highest values reported so far for the typical middle-K primitive arc melts and fall within the range of values inferred from the magmatic flux and volcanic gas data for primary arc magma compositions. About 83% of the CO2 in Klyuchevskoy magmas is likely to be derived from the subducting slab and can be attributed to flux melting with a fluid having a CO2/H2O ratio of ∼0.06. The H2O and CO2 contents in the melt inclusions after hydrous experiments were found to correlate positively with each other and negatively with the volume of fluid bubble, reflecting increasing internal pressure in melt inclusions with increasing melt hydration. Therefore, similar trends observed in some natural sets of melt inclusions can be attributed to a partial dehydration of melts after entrapment, operating simultaneously with or following post-entrapment crystallization. Our study implies that the process of post-entrapment dehydration can be completely reversed under high pressure experimental conditions. If temperature, redox conditions and pressure of melt inclusion entrapment can be independently estimated, then our novel experimental approach (homogenization at high H2O pressure) can be used to reconstruct the initial CO2 content and also the entire composition of melt inclusions in olivine, including their initial H2O content, from any type of volcanic rock. With this approach volatiles in ancient lavas can also be determined, expanding our knowledge of volatile recycling further back in Earth history.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2023-02-08
    Description: Highlights • Parental melts of sulfide-bearing KM rocks have near primary MORB-like composition. • Crystallization of these S-saturated melts occurred in near-surface conditions. • Extensive fractionation and crustal assimilation are not the causes of S-saturation. • S content in melts can be restored by accounting for daughter sulfide globules. Abstract Sulfide liquids that immiscibly separate from silicate melts in different magmatic processes accumulate chalcophile metals and may represent important sources of the metals in Earth's crust for the formation of ore deposits. Sulfide phases commonly found in some primitive mid-ocean ridge basalts (MORB) may support the occurrence of sulfide immiscibility in the crust without requiring magma contamination and/or extensive fractionation. However, the records of incipient sulfide melts in equilibrium with primitive high-Mg olivine and Cr-spinel are scarce. Sulfide globules in olivine phenocrysts in picritic rocks of MORB-affinity at Kamchatsky Mys (Eastern Kamchatka, Russia) represent a well-documented example of natural immiscibility in primitive oceanic magmas. Our study examines the conditions of silicate-sulfide immiscibility in these magmas by reporting high precision data on the compositions of Cr-spinel and silicate melt inclusions, hosted in Mg-rich olivine (86.9–90 mol% Fo), which also contain globules of magmatic sulfide melt. Major and trace element contents of reconstructed parental silicate melts, redox conditions (ΔQFM = +0.1 ± 0.16 (1σ) log. units) and crystallization temperature (1200–1285 °C), as well as mantle potential temperatures (~1350 °C), correspond to typical MORB values. We show that nearly 50% of sulfur could be captured in daughter sulfide globules even in reheated melt inclusions, which could lead to a significant underestimation of sulfur content in reconstructed silicate melts. The saturation of these melts in sulfur appears to be unrelated to the effects of melt crystallization and crustal assimilation, so we discuss the reasons for the S variations in reconstructed melts and the influence of pressure and other parameters on the SCSS (Sulfur Content at Sulfide Saturation).
    Type: Article , PeerReviewed
    Format: text
    Format: archive
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-01-31
    Description: Highlights • New experiments with melt inclusions in olivine at 1200 °C and 300 MPa. • Coupled behavior H2O and SiO2 in inclusions during re-hydration and dehydration. • SiO2 mobility results from formation/destruction of metal vacant olivine. • SiO2-undersaturated arc melt inclusions may originate by dehydration. • New method to assess initial H2O in dehydrated inclusions. Abstract Primary subduction-related magmas build up modern continental crust and counterbalance massive recycling of crustal material into the deep mantle occurring at this tectonic setting. Melt inclusions in Mg-rich olivine are believed to be the best probes of primary subduction-related melts. However, unexpectedly, most of such inclusions are SiO2-undersaturated, in contrast to predominantly SiO2-saturated island-arc rocks. The origin of these melts has been explained by melting of amphibole-bearing pyroxenites in the lower crust or upper mantle. The current models fail, however, to explain the high abundance of SiO2-undersaturated melts as well as their compositional difference with host rocks for the major elements but not for incompatible trace elements. Here we report results from the investigation of rocks and melt inclusions in olivine from Klyuchevskoy volcano in Kamchatka. We show that experimental re-hydration of SiO2-undersaturated melt inclusions in olivine Fo85−90 at 300 MPa pressure and 1200 °C causes a concomitant enrichment of melt in H2O and SiO2 so that re-hydrated inclusions (4–5 wt% H2O) become as silica-saturated as primitive Klyuchevskoy rocks. An experimental dehydration of previously re-hydrated inclusions also resulted in coupled depletion of melt in H2O and SiO2. The estimated stoichiometry of SiO2 and H2O gain/loss is consistent with dissolution/crystallization of metal-defect olivine on inclusion walls. The migration mechanism of water is controlled by hydrogen diffusion in the octahedral metal (Mg, Fe) vacancies through olivine structure as confirmed by FTIR spectroscopy. We conclude that the previously reported SiO2-undersaturated composition of many melt inclusions from hypersthene-normative island-arc rocks can be explained by the coupled loss of up to several weight percent of H2O and SiO2 from the initially trapped primitive SiO2-saturated hydrous melts. Thus, SiO2-undersaturated melt inclusions may not be representative of primitive island-arc magmas. The discovery of the coupled SiO2 and H2O loss from inclusions allowed us to propose a method for reconstruction of the initial water content even for completely dehydrated inclusions. The results of this study may indicate that the majority of primitive island-arc inclusions have not preserved their initial H2O content, and that primary arc melts contain on average ≥4 wt% H2O. The higher H2O concentration in primary arc melts implies the existence of a ‘crustal filter’ controlling the water content, which can be preserved in melt inclusions, and also the lower mantle melting temperatures and higher output H2O fluxes in subduction zones than previously estimated based on direct determination of H2O in potentially dehydrated melt inclusions.
    Type: Article , PeerReviewed
    Format: text
    Format: archive
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-02-07
    Description: Assessing the N content of arc magmas and their mantle source remains a challenge because the volatile element composition of melts and gases can be modified during magma ascent, storage, and eruption. Given that melt inclusions (MIs) in Mg-rich olivine represent the best proxies for primary arc melts, we applied, for the first time, an in situ high-resolution secondary ion mass spectrometry (SIMS) method to determine the N concentration in olivine-hosted MIs from Klyuchevskoy volcano in Kamchatka. To reverse the effects of post-entrapment modification processes (i.e., exsolution of volatiles into a fluid bubble), the MIs were partially to completely homogenized at high temperatures (1150–1400 °C) and pressures ranging from 0.1 to 500 MPa under dry to H2O-saturated conditions at variable oxygen fugacities (CCO to QFM + 3.3). After the experiments, N concentrations in water-rich MI glasses correlate positively with H2O and CO2 contents as well as with N/CO2 ratios, and negatively with the volume of the remaining fluid bubble. Glasses of completely homogenized (fluid bubble-free) MIs contain up to 25.7 ± 0.5 ppm N, whereas glasses of three unheated (natural, bubble-bearing) MIs have significantly lower N concentrations of ~1 ± 0.3 ppm. The N-CO2-Nb characteristics of completely homogenized MIs indicate that melts feeding Klyuchevskoy volcano have high absolute concentrations of both N and CO2, as well as large excess of these volatiles relative to Nb, compared to primary mid-ocean ridge melts. This implies that large amounts of N and CO2 in Klyuchevskoy melts and their mantle source are derived from the subducting slab, and that these subducted volatiles are (partially) returned to the crust and atmosphere by arc-related magmatism.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: other
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...