GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
Publikationsart
Schlagwörter
Sprache
Erscheinungszeitraum
  • 1
    Publikationsdatum: 2023-10-26
    Beschreibung: 〈title xmlns:mml="http://www.w3.org/1998/Math/MathML"〉Abstract〈/title〉〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉In the Penninic nappe stack of the Western Alps, high‐ to ultrahigh‐pressure metamorphic ophiolites of the Zermatt‐Saas Zone are associated with slivers of continental crust. In one of these slivers, Monte Emilius, the overprinting of pre‐Alpine granulite‐facies rocks by subduction‐related, Alpine eclogite‐facies metamorphism can be studied. Mafic granulites were initially transformed into blueschists. In a second step, shear zones were developed in which the blueschists recrystallized to fine‐grained, foliated glaucophane eclogites, and eclogite veins. The combination of petrographic and field observations as well as whole‐rock compositions suggests that the eclogite assemblage formed only in shear zones where Ca‐metasomatism induced a change in major element composition. These substantial differences in bulk rock composition demonstrate how spatially limited eclogitization may be controlled by chemical redistribution, the degree of fabric development, and associated metamorphic reactions along fluid pathways. Thermodynamic modelling of selected bulk rock compositions yielded only slightly different conditions of 1.8 ± 0.1 GPa/550 ± 50°C for blueschist and 1.9–2.3 GPa/550 ± 50°C for eclogite, constraining Ca‐rich fluid infiltration and transformation to a depth of ~60–70 km. Eclogitization occurred in the Early Eocene at 52.96 ± 0.91 Ma, as indicated by a well‐defined Lu–Hf garnet isochron.〈/p〉
    Beschreibung: Deutsche Forschungsgemeinschaft (DFG) http://dx.doi.org/10.13039/501100001659
    Schlagwort(e): ddc:552.4 ; eclogite ; Lu–Hf garnet geochronology ; Monte Emilius ; subduction ; thermodynamic modelling ; Zermatt–Saas zone
    Sprache: Englisch
    Materialart: doc-type:article
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2023-12-16
    Beschreibung: 〈title xmlns:mml="http://www.w3.org/1998/Math/MathML"〉Abstract〈/title〉〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉High‐ and ultrahigh‐pressure rocks occur in the Austroalpine Nappes in a ~400 km long belt from the Texel Complex in the west to the Sieggraben Unit in the east. Garnet growth during pressure increase was dated using Lu‐Hf chronometry. The results range between c. 100 and 90 Ma, indicating a short‐lived period of subduction. Combined with already published data, our estimates of metamorphic conditions indicate a field gradient with increasing pressure and temperature from the northwest to the southeast, where the rocks experienced ultrahigh‐pressure metamorphism. The P‐T conditions of the eclogites generally lie on the ‘warm’ side of the global range of subduction‐zone metamorphic conditions. The oldest Cretaceous eclogites (c. 100 Ma) are found in the Saualpe‐Koralpe area derived from widespread gabbros formed during Permian to Triassic rifting. In the Texel Complex garnets showing two growth phases yielded a Variscan‐Eoalpine mixed age indicating re‐subduction of Variscan eclogite‐bearing continental crust during the Eoalpine orogeny. Jurassic blueschist‐facies metamorphism at Meliata in the Western Carpathians and Cretaceous eclogite‐facies metamorphism in the Austroalpine are separated by a time gap of c. 50 Ma and therefore do not represent a transition from oceanic to continental subduction but rather separate events. Thus, we propose that subduction initiation was intracontinental at the site of a Permian rift.〈/p〉
    Beschreibung: German Science Foundation (DFG)
    Beschreibung: Slovak Research and Development Agency http://dx.doi.org/10.13039/501100005357
    Schlagwort(e): ddc:552.4 ; Eastern Alps ; Eoalpine (Cretaceous) event ; high‐pressure metamorphism ; thermodynamic modelling ; Lu‐Hf geochronology
    Sprache: Englisch
    Materialart: doc-type:article
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2024-05-02
    Beschreibung: Gypsum samples collected in two outcrops located in the Polemi basin, Cyprus, have been analyzed for their strontium isotopic composition. Respective methods are described in the original publication. Individual Strontium sources comprise variable Sr isotopic compositions, allowing some measure of the relative proportions of Sr derived from Atlantic seawater and continental sources including rivers and the Parathethys.
    Schlagwort(e): Cyprus; Date of determination; Event label; Messinian Salinity Crisis; Multi-collector ICP-MS (MC-ICP-MS), Neptune Plus, Thermo; Outcrop; OUTCROP; Outcrop 1; Outcrop 2; Outcrop sample; Paleoceanography; paleohumidity; Polemi_basin_gypsum_outcrop_1; Polemi_basin_gypsum_outcrop_2; Sample ID; Sample type; Seawater δ18O; Sr isotopes; Strontium-87/Strontium-86 ratio; Strontium-87/Strontium-86 ratio, standard error; Time point, descriptive; triple oxygen isotopes
    Materialart: Dataset
    Format: text/tab-separated-values, 90 data points
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Publikationsdatum: 2024-05-02
    Beschreibung: Gypsum samples collected in two outcrops located in the Polemi basin, Cyprus, have been analyzed for their triple oxygen and hydrogen isotopic composition. Respective methods are described in the original publication. The oxygen and hydrogen data provided here is derived from the crystal bound H2O within the Gypsum (CaSO4*2H2O), which allows calculating paleo-water isotopic compositions of the mother brine from which this gypsum precipitated during the Messinian Salinity Crisis. Because the isotopic composition of the mother brine is affected by the local hydroclimate at that time, such analyses allow reconstructing paleo-hydroclimate. One aim of the study was to reconstruct paleo-relative humidity of the Messinian Salinity Crisis. For this purpose, the triple oxygen and hydrogen isotope data was fitted to an appropriate isotope model that is based on the Craig and Gordon formula, which provides absolute paleo-relative humidity estimates. Model input and output data are summarized in Table S2.
    Schlagwort(e): Cyprus; Date of determination; Deuterium excess; Deuterium excess, standard deviation; Event label; Isotope ratio mass spectrometer (IRMS), Thermo Fisher, MAT253; Messinian Salinity Crisis; Outcrop; OUTCROP; Outcrop 1; Outcrop 2; Outcrop sample; Oxygen-17 excess; Oxygen-17 excess, standard deviation; Paleoceanography; paleohumidity; Polemi_basin_gypsum_outcrop_1; Polemi_basin_gypsum_outcrop_2; Sample code/label; Sample ID; Seawater δ18O; Sr isotopes; Time point, descriptive; triple oxygen isotopes; δ17O, water; δ17O, water, standard deviation; δ18O, water; δ18O, water, standard deviation; δ Deuterium; δ Deuterium, standard deviation
    Materialart: Dataset
    Format: text/tab-separated-values, 672 data points
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Publikationsdatum: 2020-02-06
    Beschreibung: The extreme depletion of the Earth’s mantle in sulfur is commonly seen as a signature of metal segregation from Earth’s mantle to Earth’s core. However, in addition to S, the mantle contains other elements as volatile as S that are hardly depleted relative to the lithophile volatility trend although they are potentially as siderophile as sulfur. We report experiments in metal-sulfide–silicate systems to show that the CI normalized abundances of S, Pb, and Sn in Earth’s mantle cannot be reproduced by element partitioning in Fe ± S–silicate systems, neither at low nor at high pressure. Much of the volatile inventory of the Earth’s mantle must have been added late in the accretion history, when metal melt segregation to the core had become largely inactive. The great depletion in S is attributed to the selective segregation of a late sulfide matte from an oxidized and largely crystalline mantle. Apparently, the volatile abundances of Earth’s mantle are not in redox equilibrium with Earth’s core.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Publikationsdatum: 2016-09-21
    Beschreibung: The Adula Nappe in the Central Alps is a mixture of various pre-Mesozoic continental basement rocks, metabasics, ultrabasics, and Mesozoic cover rocks, which were pervasively deformed during Alpine orogeny. Metabasics, ultrabasics, and locally garnet–mica schists preserve eclogite-facies assemblages while the bulk of the nappe lacks such evidence. We provide garnet major-element data, Lu profiles, and Lu–Hf garnet geochronology from eclogites sampled along a north–south traverse. A southward increasing Alpine overprint over pre-Alpine garnets is observed throughout the nappe. Garnets in a sample from the northern Adula Nappe display a single growth cycle and yield a Variscan age of 323.8 ± 6.9 Ma. In contrast, a sample from Alpe Arami in the southernmost part contains unzoned garnets that fully equilibrated to Alpine high-pressure (HP) metamorphic conditions with temperatures exceeding 800 °C. We suggest that the respective Eocene Lu–Hf age of 34.1 ± 2.8 Ma is affected by partial re-equilibration after the Alpine pressure peak. A third sample from the central part of the nappe contains separable Alpine and Variscan garnet populations. The Alpine population yields a maximum age of 38.8 ± 4.3 Ma in line with a previously published garnet maximum age from the central nappe of 37.1 ± 0.9 Ma. The Adula Nappe represents a coherent basement unit, which preserves a continuous Alpine high-pressure metamorphic gradient. It was subducted as a whole in a single, short-lived event in the upper Eocene. Controversial HP ages and conditions in the Adula Nappe may result from partly preserved Variscan assemblages in Alpine metamorphic rocks.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    Publikationsdatum: 2019-02-01
    Beschreibung: Highlights • DHFSEcrystal/melt were calculated from experiments with 0 to 20 wt.% melt TiO2. • At ca. IW − 1.6 generally higher values of DMcrystal/melt for Mo, W and U are found. • Using the new data, fractional melting models of the lunar mantle were performed. • Metal and Fesingle bondTi oxides are need at source to match observed high-Ti basalts trends. Abstract A specific feature of some basaltic lunar rocks is that their TiO2 contents can reach concentrations as high as 16 wt.%. The high-field strength elements (HFSE) group, which includes Ti, may provide valuable information of the processes that occurred in the lunar mantle to generate high-Ti mare basalts. To assess the effect of such high TiO2 concentrations on the partitioning of Zr, Hf, Nb, Ta, U, Th, Mo and W between major silicate and oxide phases and silicate melts, we present results from experiments at one atmosphere and 1100 °C–1305 °C, under controlled oxygen fugacity. With the exception of Nb, all DHFSEcpx/melt show a strong negative correlation with the TiO2 content of the silicate melt. Olivine/Silicate melt partition coefficients for Zr, Hf, Nb, Ta and Th decrease slightly from 0 to ca. 5 wt.% TiO2, above which they remain constant up to ca. 20 wt.% TiO2 in the silicate glass. In addition, redox sensitive elements, i.e. U, Mo, and W show clearly distinct DMsilicates/melt at different fO2, implying that these elements are relatively more compatible at reduced (ca. IW − 1.8) than at oxidized (FMQ and air) environments. Iron-rich and Mg-rich armalcolite show contrasting patterns of DMcrystal/melt, with the latter exhibiting slightly higher values of partition coefficient for all analyzed elements, except Th, which is equally incompatible in both end-members. Finally, the new dataset of DHFSEcrystal/melt was used to perform simple melting models of the lunar mantle cumulates. Results indicate that to reproduce the fractionation of W from the HFSE, as well as U and Th observed in lunar mare basalts, metal saturation and the presence of Fesingle bondTi oxides in the mantle sources is required.
    Materialart: Article , PeerReviewed
    Format: text
    Format: other
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    Publikationsdatum: 2020-02-06
    Beschreibung: The Troodos igneous complex (Cyprus) is a ca. 90 Ma old, well preserved supra-subduction zone ophiolite. Troodos is unique in that it shows evidence of fluid-saturation throughout the complex, from its base (i.e. podiform chromitites) to its uppermost units – the upper pillow lavas (UPL). However, it is unclear what the source of dissolved water in UPL tholeiites is, with possibilities including shallow seawater infiltration, assimilation of altered Troodos oceanic crust, recycled serpentinized oceanic crust, or subducted pelagic sediments. In order to identify and characterize these components we have carried out a detailed high-resolution study on tholeiitic lavas on orbicular structures and glasses from the UPL in Troodos. Basaltic orbicules were measured for their Sr–Nd–Hf–Pb isotope compositions, and in situ for their B isotopes using LA-MC-ICP-MS. UPL orbicules display a very narrow range in ∊∊Nd and ∊∊Hf (+7 to +8 and +13 to +15, respectively) indicating melting of a depleted mantle source. Lead isotopes, specifically 207Pb/204Pb vs. 206Pb/204Pb, form a mixing array with pelagic sediments. Furthermore, high-resolution characterization of individual orbicules revealed that UPL tholeiites display strong variability in 87Sr/86Sr (0.7039–0.7060) at the outcrop scale. Samples display δ11δ11B between −8.2 (±±0.5)‰ and +5.9 (±±1.1)‰ with an average B content of ca. 5 μg/g. Contrary to expectation, altered orbicules and their associated hyaloclastite matrixes display lower δ11δ11B (down to −10‰) and higher B contents (max. 200 μg/g) when compared to fresh glass. Furthermore, the orbicules studied here show little or no evidence of interaction with seawater, which is supported by their trace element contents and isotope compositions. When all isotope systems are taken into account, UPL lavas reflect melting of a depleted mantle source that was overprinted by hydrous sediment melts, and potentially, fluid-like subduction components that in part originate from serpentinized oceanic crust. Subsequent low-temperature alteration then drove δ11δ11B to lower values coupled with increased B uptake due to its adsorption into palagonite.
    Materialart: Article , PeerReviewed
    Format: text
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    Publikationsdatum: 2024-02-07
    Beschreibung: Cambrian igneous rocks in the Takaka Terrane of New Zealand provide important constraints for geodynamic reconstructions of the Cambrian SE Gondwana margin. We provide field data and a comprehensive trace element and isotope dataset for such rocks from the upper Baton River area in northwest Nelson, New Zealand, including the first combined Hf-Nd isotope data for Takaka Terrane rocks. These submarine volcanic rocks, known as Mataki and Benson volcanics of the Devil River Volcanics Group, are both interbedded with Haupiri Group sediments, providing a previously not observed direct stratigraphic link between the two volcanic units. Incompatible element abundances of Mataki Volcanics display a full spectrum from subduction-modified back-arc-tholeiites to E-MORB type tholeiites. Initial Hf-Nd isotope compositions are coupled, spanning a range from MORB-like to OIB-like compositions. The MORB-like endmember (initial ϵNd +7 and ϵHf +13), taps moderately depleted asthenospheric mantle. If extrapolated to present-day composition, this depleted mantle endmember does not resemble modern Pacific-type mantle, suggesting formation in a back-arc basin separated from Pacific mantle by a continent-ward, intra-oceanic subduction zone. The enriched asthenospheric mantle endmember in the Mataki Volcanics may be an equivalent to the sources of Neoproterozic or middle Cambrian intra-continental flood basalts in central and SE-Australia.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    Publikationsdatum: 2012-04-01
    Beschreibung: The earliest compounds forming Earth's first continental crust were magmatic rocks with tonalitic-trondhjemitic-granodioritic composition (TTGs). TTGs are widely seen as originating from melting of hydrated oceanic crust in subduction zones. Alternative models argue that they may have formed by melting within thickened mafic oceanic protocrust. To simulate formation of Eoarchean TTGs in different tectonic regimes, we combine for the first time the thermodynamic calculation of residual assemblages with subsequent modeling of trace element contents in TTGs. We compare water-absent partial melting of two hydrated starting compositions, a modern mid-oceanic-ridge basalt (MORB) and a typical Eoarchean arc tholeiite from the Isua Supracrustal Belt that represents the country rock of Earth's oldest TTGs in southern West Greenland. At 10 kbar, partial melting of MORB-like residues results in modeled TTG compositions that are very different from natural ones. Melting at higher pressures (14 and 18 kbar) leads to a better match, but several key trace element parameters in TTGs are still amiss. A perfect fit for trace element compositions is achieved by melting of Eoarchean arc tholeiites at 10 and 14 kbar. These protoliths contain less Al and Na and more Fe and Mg as compared to present-day MORB and form amphibole-rich and plagioclase-free residues even at low pressures. Formation of Earth's oldest continental crust is therefore best explained by melting within tectonically thickened mafic island-arc crust.
    Print ISSN: 0091-7613
    Digitale ISSN: 1943-2682
    Thema: Geologie und Paläontologie
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...