GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Copernicus Publications (EGU)  (4)
  • 1
    Publication Date: 2019-09-23
    Description: The Arctic Ocean ecosystem is particularly vulnerable to ocean acidification (OA) related alterations due to the relatively high CO2 solubility and low carbonate saturation states of its cold surface waters. Thus far, however, there is only little known about the consequences of OA on the base of the food web. In a mesocosm CO2-enrichment experiment (overall CO2 levels ranged from ~ 180 to 1100 μatm) in Kongsfjorden off Svalbard, we studied the consequences of OA on a natural pelagic microbial community. OA distinctly affected the composition and growth of the Arctic phytoplankton community, i.e. the picoeukaryotic photoautotrophs and to a lesser extent the nanophytoplankton thrived. A shift towards the smallest phytoplankton as a result of OA will have direct consequences for the structure and functioning of the pelagic food web and thus for the biogeochemical cycles. Besides being grazed, the dominant pico- and nanophytoplankton groups were found prone to viral lysis, thereby shunting the carbon accumulation in living organisms into the dissolved pools of organic carbon and subsequently affecting the efficiency of the biological pump in these Arctic waters.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-07-26
    Description: The potential effect of ocean acidification (OA) on seawater halocarbons in the Arctic was investigated during a~mesocosm experiment in Spitsbergen in June–July 2010. Over a period of 5 weeks, natural phytoplankton communities in nine ~50 m3 mesocosms were studied under a range of pCO2 treatments from ~185 μatm to ~1420 μatm. In general, the response of halocarbons to pCO2 was subtle, or undetectable. A large number of significant correlations with a range of biological parameters (chlorophyll a, microbial plankton community, phytoplankton pigments) were identified, indicating a biological control on the concentrations of halocarbons within the mesocosms. The temporal dynamics of iodomethane (CH3I) alluded to active turnover of this halocarbon in the mesocosms and strong significant correlations with biological parameters suggested a biological source. However, despite a pCO2 effect on various components of the plankton community, and a strong association between CH3I and biological parameters, no effect of pCO2 was seen in CH3I. Diiodomethane (CH2I2) displayed a number of strong relationships with biological parameters. Furthermore, the concentrations, the rate of net production and the sea-to-air flux of CH2I2 showed a significant positive response to pCO2. There was no clear effect of pCO2 on bromocarbon concentrations or dynamics. However, periods of significant net loss of bromoform (CHBr3) were found to be concentration-dependent, and closely correlated with total bacteria, suggesting a degree of biological consumption of this halocarbon in Arctic waters. Although the effects of OA on halocarbon concentrations were marginal, this study provides invaluable information on the production and cycling of halocarbons in a region of the world's oceans likely to experience rapid environmental change in the coming decades.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-09-23
    Description: Ocean acidification and carbonation, driven by anthropogenic emissions of carbon dioxide (CO2), have been shown to affect a variety of marine organisms and are likely to change ecosystem functioning. High latitudes, especially the Arctic, will be the first to encounter profound changes in carbonate chemistry speciation at a large scale, namely the under-saturation of surface waters with respect to aragonite, a calcium carbonate polymorph produced by several organisms in this region. During a CO2 perturbation study in 2010, in the framework of the EU-funded project EPOCA, the temporal dynamics of a plankton bloom was followed in nine mesocosms, manipulated for CO2 levels ranging initially from about 185 to 1420 μatm. Dissolved inorganic nutrients were added halfway through the experiment. Autotrophic biomass, as identified by chlorophyll a standing stocks (Chl a), peaked three times in all mesocosms. However, while absolute Chl a concentrations were similar in all mesocosms during the first phase of the experiment, higher autotrophic biomass was measured at high in comparison to low CO2 during the second phase, right after dissolved inorganic nutrient addition. This trend then reversed in the third phase. There were several statistically significant CO2 effects on a variety of parameters measured in certain phases, such as nutrient utilization, standing stocks of particulate organic matter, and phytoplankton species composition. Interestingly, CO2 effects developed slowly but steadily, becoming more and more statistically significant with time. The observed CO2 related shifts in nutrient flow into different phytoplankton groups (mainly diatoms, dinoflagellates, prasinophytes and haptophytes) could have consequences for future organic matter flow to higher trophic levels and export production, with consequences for ecosystem productivity and atmospheric CO2.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    Copernicus Publications (EGU)
    In:  Biogeosciences (BG), 10 (5). pp. 3285-3296.
    Publication Date: 2019-09-23
    Description: he anthropogenic increase of carbon dioxide (CO2) alters the seawater carbonate chemistry, with a decline of pH and an increase in the partial pressure of CO2 (pCO2). Although bacteria play a major role in carbon cycling, little is known about the impact of rising pCO2 on bacterial carbon metabolism, especially for natural bacterial communities. In this study, we investigated the effect of rising pCO2 on bacterial production (BP), bacterial respiration (BR) and bacterial carbon metabolism during a mesocosm experiment performed in Kongsfjorden (Svalbard) in 2010. Nine mesocosms with pCO2 levels ranging from ca. 180 to 1400 μatm were deployed in the fjord and monitored for 30 days. Generally BP gradually decreased in all mesocosms in an initial phase, showed a large (3.6-fold average) but temporary increase on day 10, and increased slightly after inorganic nutrient addition. Over the wide range of pCO2 investigated, the patterns in BP and growth rate of bulk and free-living communities were generally similar over time. However, BP of the bulk community significantly decreased with increasing pCO2 after nutrient addition (day 14). In addition, increasing pCO2 enhanced the leucine to thymidine (Leu : TdR) ratio at the end of experiment, suggesting that pCO2 may alter the growth balance of bacteria. Stepwise multiple regression analysis suggests that multiple factors, including pCO2, explained the changes of BP, growth rate and Leu : TdR ratio at the end of the experiment. In contrast to BP, no clear trend and effect of changes of pCO2 was observed for BR, bacterial carbon demand and bacterial growth efficiency. Overall, the results suggest that changes in pCO2 potentially influence bacterial production, growth rate and growth balance rather than the conversion of dissolved organic matter into CO2.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...