GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2020-02-06
    Description: The knowledge of the phase behavior of carbon dioxide (CO2)-rich mixtures is a key factor to understand the chemistry and migration of natural volcanic CO2 seeps in the marine environment, as well as to develop engineering processes for CO2 sequestration coupled to methane (CH4) production from gas hydrate deposits. In both cases, it is important to gain insights into the interactions of the CO2-rich phase—liquid or gas—with the aqueous medium (H2O) in the pore space below the seafloor or in the ocean. Thus, the CH4-CO2 binary and CH4-CO2-H2O ternary mixtures were investigated at relevant pressure and temperature conditions. The solubility of CH4 in liquid CO2 (vapor-liquid equilibrium) was determined in laboratory experiments and then modelled with the Soave–Redlich–Kwong equation of state (EoS) consisting of an optimized binary interaction parameter kij(CH4-CO2) = 1.32 × 10−3 × T − 0.251 describing the non-ideality of the mixture. The hydrate-liquid-liquid equilibrium (HLLE) was measured in addition to the composition of the CO2-rich fluid phase in the presence of H2O. In contrast to the behavior in the presence of vapor, gas hydrates become more stable when increasing the CH4 content, and the relative proportion of CH4 to CO2 decreases in the CO2-rich phase after gas hydrate formation.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-03-18
    Description: This article presents gas hydrate experimental measurements for mixtures containing methane (CH4), carbon dioxide (CO2) and nitrogen (N2) with the aim to better understand the impact of water (H2O) on the phase equilibrium. Some of these phase equilibrium experiments were carried out with a very high water-to-gas ratio that shifts the gas hydrate dissociation points to higher pressures. This is due to the significantly different solubilities of the different guest molecules in liquid H2O. A second experiment focused on CH4-CO2 exchange between the hydrate and the vapor phases at moderate pressures. The results show a high retention of CO2 in the gas hydrate phase with small pressure variations within the first hours. However, for our system containing 10.2 g of H2O full conversion of the CH4 hydrate grains to CO2 hydrate is estimated to require 40 days. This delay is attributed to the shrinking core effect, where initially an outer layer of CO2-rich hydrate is formed that effectively slows down the further gas exchange between the vapor phase and the inner core of the CH4-rich hydrate grain.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-01-31
    Description: Due to its remoteness, the deep-sea floor remains an understudied ecosystem of our planet. The patchiness of existing data sets makes it difficult to draw conclusions about processes that apply to a wider area. In our study we show how different settings and processes determine sediment heterogeneity on small spatial scales. We sampled solid phase and porewater from the upper 10 m of an approximately 7.4×13 km2 area in the Peru Basin, in the southeastern equatorial Pacific Ocean, at 4100 m water depth. Samples were analyzed for trace metals, including rare earth elements and yttrium (REY), as well as for particulate organic carbon (POC), CaCO3, and nitrate. The analyses revealed the surprisingly high spatial small-scale heterogeneity of the deep-sea sediment composition. While some cores have the typical green layer from Fe(II) in the clay minerals, this layer is missing in other cores, i.e., showing a tan color associated with more Fe(III) in the clay minerals. This is due to varying organic carbon contents: nitrate is depleted at 2–3 m depth in cores with higher total organic carbon contents but is present throughout cores with lower POC contents, thus inhibiting the Fe(III)-to-Fe(II) reduction pathway in organic matter degradation. REY show shale-normalized (SN) patterns similar to seawater, with a relative enrichment of heavy REY over light REY, positive LaSN anomaly, negative CeSN anomaly, and positive YSN anomaly and correlate with the Fe-rich clay layer and, in some cores, also correlate with P. We therefore propose that Fe-rich clay minerals, such as nontronite, as well as phosphates, are the REY-controlling phases in these sediments. Variability is also seen in dissolved Mn and Co concentrations between sites and within cores, which might be due to dissolving nodules in the suboxic sediment, as well as in concentration peaks of U, Mo, As, V, and Cu in two cores, which might be related to deposition of different material at lower-lying areas or precipitation due to shifting redox boundaries.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...