GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Online-Ressource
    Online-Ressource
    Cham :Springer International Publishing AG,
    Schlagwort(e): Polarization (Nuclear physics). ; Electronic books.
    Materialart: Online-Ressource
    Seiten: 1 online resource (414 pages)
    Ausgabe: 2nd ed.
    ISBN: 9783319552163
    Serie: Springer Series on Atomic, Optical, and Plasma Physics Series ; v.96
    DDC: 539.757
    Sprache: Englisch
    Anmerkung: Intro -- Foreword to the Second Edition -- Foreword to the First Edition -- Preface to the Second Edition -- Preface to the First Edition -- Acknowledgements -- Contents -- Notation -- Basic Concepts -- 1 Introduction -- 1.1 Motivation -- 1.2 Historical Perspective -- 1.3 Modern Approaches -- References -- 2 Polarized Light -- 2.1 Polarization of Coherent Electromagnetic Radiation -- 2.1.1 Maxwell's Theory of Electromagnetic Radiation -- 2.1.2 The Polarization Ellipse -- 2.1.3 Parameterization of Polarization: Stokes Vectors -- 2.1.4 The Principal Frame -- 2.1.5 The Poincaré Sphere -- 2.2 Electric Dipole Radiation from Atomic Transitions -- 2.2.1 Coordinate Frames, Scattering Amplitudes, and Stokes Parameters -- 2.2.2 Atomic State Parameters, Electron Charge Clouds, and Their Experimental Determination -- 2.2.3 The Incoherent Case with Conservation of Atomic Reflection Symmetry -- 2.2.4 The Incoherent Case Without Conservation of Atomic Reflection Symmetry -- 2.2.5 Summary of Parameterization for P-State Excitation -- 2.2.6 Extension to Coherently Excited Stark Manifolds -- References -- 3 Polarized Electrons -- 3.1 The Dirac Equation -- 3.2 Pure Spin States: State Vector Description -- 3.3 Mixed Spin States: Density Matrix Description -- 3.4 Experimental Determination of Electron Polarization -- References -- 4 Experimental Geometries and Approaches -- 4.1 Integrated Cross Sections and Alignment -- 4.1.1 Schematic Setup for Angle-Integrated Measurements -- 4.1.2 Setups with Results for Electron Impact and Atom Impact Excitation -- 4.2 Differential Cross Sections -- 4.2.1 Schematic Setups for Angle-Differential Measurements -- 4.2.2 A Setup with Results for Electron--Atom Collisions -- 4.2.3 The Magnetic Angle Changer -- 4.2.4 Setups with Results for Electron Impact Ionization -- 4.2.5 A Setup with Results for Atom Impact Excitation. , 4.3 Planar Scattering Symmetry: Alignment and Orientation Parameters -- 4.3.1 Schematic Setups for Coherence and Correlation Analysis -- 4.3.2 Setups with Results for Electron Impact Excitation and De-excitation -- 4.3.3 Setups with Results for Atom Impact Excitation -- 4.4 Generalized STU Parameters for Electron Collisions -- 4.5 Generalized Stokes Parameters for Electron--Atom Collisions -- 4.6 Atom--Atom Collisions with Laser-Prepared Targets -- References -- 5 Density Matrices: Connection Between Experiment and Theory -- 5.1 Motivation -- 5.2 Scattering Amplitudes -- 5.2.1 Scattering Amplitudes in Different Coordinate Frames -- 5.2.2 Symmetry Properties -- 5.2.3 Scattering Amplitudes in the Non-relativistic Limit -- 5.3 Density Matrices -- 5.4 An Explicit Example: Generalized STU Parameters -- 5.4.1 Definition in Terms of Scattering Amplitudes -- 5.4.2 Exact Symmetry Relationships -- 5.4.3 An Approximate Symmetry: The Fine-Structure Effect -- 5.5 Irreducible Tensor Operators and State Multipoles -- 5.5.1 Basic Definitions -- 5.5.2 Coupled Systems -- 5.5.3 Time Evolution of State Multipoles: Quantum Beats -- 5.5.4 Time Integration over Quantum Beats -- 5.6 Stokes Parameters -- 5.7 Atomic and Photon Density Matrices for P-State Excitation -- References -- 6 Computational Methods -- 6.1 Electron Versus Heavy-Particle Impact -- 6.2 Computational Methods for Electron Scattering -- 6.2.1 Potential Scattering -- 6.2.2 Perturbation Approaches -- 6.2.3 The Close-Coupling Expansion -- 6.2.4 Time-Dependent Approaches -- 6.2.5 Recent Developments -- 6.3 Computational Methods for Heavy-Particle Collisions -- 6.3.1 Semi-classical Approaches -- 6.3.2 Classical-Trajectory Monte-Carlo Approach -- 6.4 Visualization of Charge Clouds -- References -- Case Studies -- 7 Electron Impact Excitation -- 7.1 Angle-Integrated Stokes Parameters and Cross Sections. , 7.1.1 Excitation of the (6s6p) States in Hg -- 7.1.2 Excitation of Ions: Cd+(2P3/2) -- 7.1.3 An Unresolved Mystery: Electron Impact Excitation of (4s5s)3S1 in Zn and (6s7s)3S1 in Hg -- 7.2 Angle-Differential Stokes and STU Parameters -- 7.2.1 Electron Impact Excitation of Helium -- 7.2.2 Electron Impact Excitation of Hydrogen, Lithium, and Sodium -- 7.2.3 Electron Impact Excitation of Heavy Noble Gases -- 7.2.4 Electron Impact Excitation of Mercury -- 7.2.5 Elastic Electron Scattering from Cesium -- 7.2.6 Recent Developments in Electron Scattering from Cesium -- 7.3 Conclusions -- References -- 8 Ion and Atom Impact Excitation -- 8.1 Angle-Differential S rightarrow P, D Excitation and Transfer -- 8.1.1 S rightarrow P, D Excitation in Mg+- and Li-Rare-Gas Systems -- 8.1.2 S rightarrow P Transfer Excitation in B3+-He, Ne Collisions -- 8.1.3 S rightarrow P Transfer in Small-Angle H+, Li+-Na(3s) Collisions -- 8.1.4 Vortex Formation in Antiproton-Atomic-Hydrogen Collisions -- 8.2 Angle-Integrated Alignment Studies Using Optically Prepared Targets -- 8.2.1 Alignment Effects in H+, Li+-Na(3p) Collisions -- 8.2.2 Alignment Effects in He2+-Na(3p) Collisions -- 8.3 Angle-Differential Studies Using Optically Prepared Targets -- 8.3.1 Level Populations in H+-Na(3p)rightarrowH(n=2,3)-Na+ Scattering -- 8.3.2 Level Populations in Li+-Na(3p)rightarrowLi(2p)-Na+ Scattering -- 8.3.3 Level Populations in He+ - Na(3p)rightarrowHe(2p)-Na+ Scattering -- 8.4 Angle-Differential Studies Using Optically Prepared -- 8.4.1 H+-Na(3p)rightarrowH (2p)-Na+ Scattering Experiments -- 8.4.2 Li+-Na(3p)rightarrowLi(2p)--Na+ Scattering Experiments -- 8.5 Reaction Microscope Studies: COLTRIMS with Alkali MOTs -- 8.5.1 Li+ Capture from a Na (3s, 3p) MOT -- 8.5.2 Na+ Capture from a Rb (5p) MOT -- References -- 9 Propensity Rules. , 9.1 Orientation for S to P Impact Excitation by Electrons and Positrons -- 9.2 Orientation for S to P Impact Excitation by Protons and Antiprotons -- 9.3 Orientation for Excitation and De-Excitation by Electrons and Positrons -- 9.4 Principal Quantum Number Dependence of Orientation and Alignment Parameters -- 9.5 Spin-Dependent Propensities -- 9.6 Validity Limits of Propensity Rules -- 9.6.1 Electron Impact Excitation of Neon -- 9.6.2 Electron Impact Excitation of He(1s3d)1D -- References -- 10 Impact Ionization -- 10.1 Ionization by Electron Impact -- 10.1.1 Angle-Integrated Studies -- 10.1.2 Angle-Differential Studies -- 10.1.3 Selected Developments Since 2001 -- 10.2 Ionization by Heavy-Particle Impact: Reaction Microscope Studies with Optically Prepared Targets -- 10.3 Ionization with Excitation by Heavy-Particle Impact -- 10.3.1 Angle-Integrated Studies -- 10.3.2 Angle-Differential Studies -- References -- 11 Photo-Driven Processes -- 11.1 Introductory Remarks -- 11.2 Photoionization by Continuous Radiation -- 11.3 Photoionization by Short-Pulse Radiation -- References -- 12 Related Topics and Applications -- 12.1 Spin-Polarized Auger Electrons -- 12.2 Autoionization Anisotropies in Heavy-Particle Collisions -- 12.3 Collisions with Molecules -- 12.3.1 Electron Collisions with Molecules -- 12.3.2 Heavy-Particle Collisions with Molecules -- 12.4 Collisions with Surfaces and Foils -- 12.5 Polarization in Collisional Broadening and Redistribution -- 12.6 Alignment and Orientation Studies at Thermal Energies -- 12.6.1 Alignment Studies Involving an Optically Prepared Atom -- 12.6.2 Alignment and Orientation Studies Involving Two Optically Prepared Atoms -- 12.7 Plasma Polarization Spectroscopy -- 12.8 Spin-Polarized Beams for Nuclear and Particle Physics -- 12.9 Quantum Entanglement and Bell Correlation in Electron-Exchange Collisions. , References -- Selection of Historical Papers (1925-1976) -- 13 Introductory Summaries -- Appendix Further Readings -- Index.
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    facet.materialart.
    Unbekannt
    American Society of Limnology and Oceanography
    In:  Limnology and Oceanography: Methods, 10 . pp. 752-766.
    Publikationsdatum: 2019-09-23
    Beschreibung: The role of the global surface ocean as a source and sink for atmospheric carbon dioxide and the flux strengths between the ocean and the atmosphere can be quantified by measuring the fugacity of CO2 (ƒCO2) as well as the dissolved inorganic carbon (DIC) concentration and its isotopic composition in surface seawater. In this work, the potential of continuous wave cavity ringdown spectroscopy (cw-CRDS) for autonomous underway measurements of ƒCO2 and the stable carbon isotope ratio of DIC [δ13C(DIC)] is explored. For the first time, by using a conventional air-sea equilibrator setup, both quantities were continuously and simultaneously recorded during a field deployment on two research cruises following meridional transects across the Atlantic Ocean (Bremerhaven, Germany–Punta Arenas, Chile). Data are compared against reference measurements by an established underway CO2 monitoring system and isotope ratio mass spectrometric analysis of individual water samples. Agreement within ΔƒCO2 = 0.35 μatm for atmospheric and ΔƒCO2 = 2.5 μatm and Δδ13C(DIC) =0.33‰ for seawater measurements have been achieved. Whereas “calibration-free” ƒCO2 monitoring is feasible, the measurement of accurate isotope ratios relies on running reference standards on a daily basis. Overall, the installed CRDS/equilibrator system was shown to be capable of reliable online monitoring of ƒCO2, equilibrium δ13C(CO2), δ13C(DIC), and pO2 aboard moving research vessels, thus making possible corresponding measurements with high spatial and temporal resolution.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...