GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • COPERNICUS GESELLSCHAFT MBH  (2)
  • American Geophysical Union  (1)
Document type
Publisher
Years
  • 1
    Publication Date: 2019-02-04
    Description: We introduce the coupled model of the Green- land glacial system IGLOO 1.0, including the polythermal ice sheet model SICOPOLIS (version 3.3) with hybrid dy- namics, the model of basal hydrology HYDRO and a param- eterization of submarine melt for marine-terminated outlet glaciers. The aim of this glacial system model is to gain a better understanding of the processes important for the future contribution of the Greenland ice sheet to sea level rise under future climate change scenarios. The ice sheet is initialized via a relaxation towards observed surface elevation, impos- ing the palaeo-surface temperature over the last glacial cycle. As a present-day reference, we use the 1961–1990 standard climatology derived from simulations of the regional atmo- sphere model MAR with ERA reanalysis boundary condi- tions. For the palaeo-part of the spin-up, we add the temper- ature anomaly derived from the GRIP ice core to the years 1961–1990 average surface temperature field. For our pro- jections, we apply surface temperature and surface mass bal- ance anomalies derived from RCP 4.5 and RCP 8.5 scenar- ios created by MAR with boundary conditions from simula- tions with three CMIP5 models. The hybrid ice sheet model is fully coupled with the model of basal hydrology. With this model and the MAR scenarios, we perform simulations to estimate the contribution of the Greenland ice sheet to future sea level rise until the end of the 21st and 23rd centuries. Fur- ther on, the impact of elevation–surface mass balance feed- back, introduced via the MAR data, on future sea level rise is inspected. In our projections, we found the Greenland ice sheet to contribute between 1.9 and 13.0 cm to global sea level rise until the year 2100 and between 3.5 and 76.4 cm until the year 2300, including our simulated additional sea level rise due to elevation–surface mass balance feedback. Translated into additional sea level rise, the strength of this feedback in the year 2100 varies from 0.4 to 1.7 cm, and in the year 2300 it ranges from 1.7 to 21.8 cm. Additionally, taking the Helheim and Store glaciers as examples, we inves- tigate the role of ocean warming and surface runoff change for the melting of outlet glaciers. It shows that ocean temper- ature and subglacial discharge are about equally important for the melting of the examined outlet glaciers.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    American Geophysical Union
    In:  EPIC3AGU Fall Meeting 2020 - Online Everywhere, Online, 2020-12-01-2020-12-17American Geophysical Union
    Publication Date: 2020-12-15
    Description: The Northeast Greenland Ice Stream (NEGIS) is an important dynamic component contributing to the total mass balance of the Greenland ice sheet, as it reaches up to the central divide and drains 12% of the ice sheet. The ice stream geometry and surface velocities in the onset region of the NEGIS are not yet sufficiently well reproduced by ice sheet models. We present an assessment of the basal conditions of the onset region in a systematic analysis of airborne ultra-wideband radar data. Our data yield a new detailed model of ice-thickness distribution and basal topography in the upstream part of the ice stream. We observe a change from a smooth to a rougher bed where the ice stream widens from 10 to 60 km, and a distinct roughness anisotropy, indicating a preferred orientation of subglacial structures. The observation of off-nadir reflections that are symmetrical to the bed reflection in the radargrams suggests that these structures are elongated subglacial landforms, which in turn indicate potential streamlining of the bed. Together with basal water routing pathways, our observations hint to two different zones in this part of the NEGIS: an accelerating and smooth upstream region, which is collecting water, with reduced basal traction, and in the further downstream part, where the ice stream is slowing down and is widening, with a distribution of basal water towards the shear margins. Our findings support the hypothesis that the NEGIS is strongly interconnected to the subglacial water system in its onset region, but also to the subglacial substrate and morphology.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    COPERNICUS GESELLSCHAFT MBH
    In:  EPIC3The Cryosphere, COPERNICUS GESELLSCHAFT MBH, 12(12), pp. 3931-3947, ISSN: 1994-0424
    Publication Date: 2020-06-08
    Description: Subglacial hydrology plays an important role in ice sheet dynamics as it determines the sliding velocity. It also drives freshwater into the ocean, leading to undercutting of calving fronts by plumes. Modeling subglacial water has been a challenge for decades. Only recently have new approaches been developed such as representing subglacial channels and thin water sheets by separate layers of variable hydraulic conductivity. We extend this concept by modeling a confined–unconfined aquifer system (CUAS) in a single layer of an equivalent porous medium (EPM). The advantage of this formulation is that it prevents unphysical values of pressure at reasonable computational cost. We performed sensitivity tests to investigate the effect of different model parameters. The strongest influence of model parameters was detected in terms of governing the opening and closure of the system. Furthermore, we applied the model to the Northeast Greenland Ice Stream, where an efficient system independent of seasonal input was identified about 500km downstream from the ice divide. Using the effective pressure from the hydrology model, the Ice Sheet System Model (ISSM) showed considerable improvements in modeled velocities in the coastal region.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...