GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: The binding of the amyloid protein precursor (APP) to heparan sulfate proteoglycans has been shown to stimulate the neurite-promoting activity of APP. In this study, proteoglycans that bind with high affinity to APP were characterized. Conditioned medium from cultures of postnatal day 3 mouse brain cells was applied to an affinity column containing a peptide homologous to a heparin-binding domain of APP. A fraction 17-fold enriched in proteoglycans was recovered by elution with a salt gradient. APP bound saturably and with high affinity to the affinity-purified proteoglycan fraction. Scatchard analysis of the binding showed that APP bound to high- and low-affinity sites with equilibrium dissociation constants of 1.4 × 10−11 and 6.5 × 10−10M, respectively. APP, in conjunction with the affinity-purified proteoglycan fraction, promoted neurite outgrowth. The affinity-purified proteoglycan fraction contained a heparan sulfate proteoglycan and a chondroitin sulfate proteoglycan. Digestion of the affinity-purified fraction with heparitinase I revealed a core protein of 63–69-kDa molecular mass, whereas digestion with chondroitinase ABC revealed a core protein of 100–110 kDa. The results suggest that expression of specific APP-binding proteoglycans may be an important step in the regulation of the neurite outgrowth-promoting activity of APP.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Previous studies have shown that a minor glycoform of acetylcholinesterase (AChE) is increased in Alzheimer's disease brain and cerebrospinal fluid. This glycoform can be distinguished from other AChE species by its lack of binding to concanavalin A (Con A). In this study, the temporal relationship between AChE glycosylation and Aβ deposition was examined in Tg2576 mice. There was a significant (p 〈 0.05) difference in AChE glycosylation in Tg2576 mice compared with age-matched background strain control mice at 4 months of age. This difference in glycosylation was also observed in 8- and 12-month-old Tg2576 mice. In contrast, Aβ plaques were only seen in the Tg2576 mice at 12 months of age, and were not detected at 4 and 8 months of age. Soluble human-sequence Aβ was detected as early as 4 months of age in the transgenic mice. The altered AChE glycosylation was due to an increase in a minor AChE isoform, which did not bind Con A, similar to that previously observed to be increased in Alzheimer's disease brain and cerebrospinal fluid. The results demonstrate that in transgenic mice altered AChE glycosylation is associated with very early events in the development of AD-like pathology. The study supports the possibility that glycosylation may also be a useful biomarker of AD.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Oxidative stress may have an important role in the progression of neurodegenerative disorders such as Alzheimer's disease (AD) and prion diseases. Oxidative damage could result from interactions between highly reactive transition metals such as copper (Cu) and endogenous reducing and/or oxidizing molecules in the brain. One such molecule, homocysteine, a thiol-containing amino acid, has previously been shown to modulate Cu toxicity in HeLa and endothelial cells in vitro. Due to a possible link between hyperhomocysteinemia and AD, we examined whether interaction between homocysteine and Cu could potentiate Cu neurotoxicity. Primary mouse neuronal cultures were treated with homocysteine and either Cu (II), Fe (II or III) or Zn (II). Homocysteine was shown to selectively potentiate toxicity from low micromolar concentrations of Cu. The toxicity of homocysteine/Cu coincubation was dependent on the ability of homocysteine to reduce Cu (II) as reflected by the inhibition of toxicity with the Cu (I)-specific chelator, bathocuproine disulphonate. This was supported by data showing that homocysteine reduced Cu (II) more effectively than cysteine or methionine but did not reduce Fe (III) to Fe (II). Homocysteine also generated high levels of hydrogen peroxide in the presence of Cu (II) and promoted Aβ/Cu-mediated hydrogen peroxide production and neurotoxicity. The potentiation of metal toxicity did not involve excitotoxicity as ionotropic glutamate receptor antagonists had no effect on neurotoxicity. Homocysteine alone also had no effect on neuronal glutathione levels. These studies suggest that increased copper and/or homocysteine levels in the elderly could promote significant oxidant damage to neurons and may represent additional risk factor pathways which conspire to produce AD or related neurodegenerative conditions.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: Amyloidogenic processing of the β-amyloid precursor protein (APP) has been implicated in the pathology of Alzheimer’s disease. Because it has been suggested that catabolic processing of the APP holoprotein occurs in acidic intracellular compartments, we studied the effects of the protonophore carbonyl cyanide p-(trifluoromethoxy)phenylhydrazone (FCCP) and the H+-ATPase inhibitor bafilomycin A1 on APP catabolism in human embryonic kidney 293 cells expressing either wild-type or “Swedish” mutant APP. Unlike bafilomycin A1, which inhibits β-amyloid production in cells expressing mutant but not wild-type APP, FCCP inhibited β-amyloid production in both cell types. Moreover, the effects of FCCP were independent of alterations in total cellular APP levels or APP maturation, and the concentrations used did not alter either cellular ATP levels or cell viability. Bafilomycin A1, which had no effect on β-amyloid production in wild-type cells, inhibited endocytosis of fluorescent transferrin, whereas concentrations of FCCP that inhibited β-amyloid production in these cells had no effect on endosomal function. Thus, in wild-type-expressing cells it appears that the β-amyloid peptide is not produced in the classically defined endosome. Although bafilomycin A1 decreased β-amyloid release from cells expressing mutant APP but not wild-type APP, it altered lysosomal function in both cell types, suggesting that in normal cells β-amyloid is not produced in the lysosome. Although inhibition of β-amyloid production by bafilomycin A1 in mutant cells may occur via changes in endosomal/lysosomal pH, our data suggest that FCCP inhibits wild-type β-amyloid production by acting on a bafilomycin A1-insensitive acidic compartment that is distinct from either the endosome or the lysosome.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: Previous studies have demonstrated the molecular linkage of three causative genes for early-onset Alzheimer’s disease: the presenilin 1 gene on chromosome 14, the presenilin 2 gene on chromosome 1, and the amyloid precursor protein gene on chromosome 21. In the present study, we have investigated the distributions of the ∼20-kDa C-terminal and ∼30-kDa N-terminal fragments of presenilin 1 and the amyloid precursor protein in rat brain and compared them with the distribution of several marker proteins. The fragments of presenilin 1 are present in synaptic plasma membranes, neurite growth cone membranes, and small synaptic vesicles of rat brain. Both proteolytic fragments are coenriched in the corresponding tissue fractions. Based on this observation, it seems likely that N- and C-terminal presenilin 1 fragments form a functional unit while remaining associated. In contrast to a predominant subcellular localization of presenilin 1 to the endoplasmic reticulum and Golgi apparatus in different cell lines, our results indicate that rat brain presenilin 1 fragments exit from these biosynthetic compartments to reach synaptic organelles in neurons.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Intracellular inclusions containing α-synuclein (αSN) are pathognomonic features of several neurodegenerative disorders. Inclusions occur in oligodendrocytes in multiple system atrophy (MSA) and in neurons in dementia with Lewy bodies (DLB) and Parkinson's disease (PD). In order to identify disease-associated changes of αSN, this study compared the levels, solubility and molecular weight species of αSN in brain homogenates from MSA, DLB, PD and normal aged controls. In DLB and PD, substantial amounts of detergent-soluble and detergent-insoluble αSN were detected compared with controls in grey matter homogenate. Compared with controls, MSA cases had significantly higher levels of αSN in the detergent-soluble fraction of brain samples from pons and white matter but detergent-insoluble αSN was not detected. There was an inverse correlation between buffered saline-soluble and detergent-soluble levels of αSN in individual MSA cases suggesting a transition towards insolubility in disease. The differences in solubility of αSN between grey and white matter in disease may result from different processing of αSN in neurons compared with oligodendrocytes. Highly insoluble αSN is not involved in the pathogenesis of MSA. It is therefore possible that buffered saline-soluble or detergent-soluble forms of αSN are involved in the pathogenesis of other αSN-related diseases.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Accumulation of theβ-amyloid protein (Aβ) in the brain is an important step in the pathogenesis of Alzheimer's disease. However, the mechanism of Aβ toxicity remains unclear. Aβ can bind to the extracellular matrix, a structure that regulates adhesive events such as neurite outgrowth and synaptogenesis. The binding of Aβ to the extracellular matrix suggests that Aβ may disrupt cell-substrate interactions. Therefore, the effect of substrate-bound Aβ on the growth of isolated chick sympathetic and mouse cortical neurons was examined. Aβ1-40 and Aβ1-42 had dose-dependent effects on cell morphology. When tissue culture plates were coated with 0.1-10 ng/well Aβ, neurite outgrowth increased. Higher amounts of Aβ peptides (≥μg/well) inhibited outgrowth. The inhibitory effect was related to aggregation of the peptide, as preincubation of Aβ1-40 for 24 h at 37 °C (a process known to increase amyloid fibril formation) was necessary for inhibition of neurite outgrowth. Aβ29-42, but not Aβ1-28, also inhibited neurite outgrowth at high concentrations, demonstrating that the inhibitory domain is located within the hydrophobic C-terminal region. Aβ1-40, Aβ1-42, and Aβ29-42 also inhibited cell-substrate adhesion, indicating that the effect on neurite outgrowth may have been due to inhibition of cell adhesion. The results suggest that accumulation of Aβ may disrupt cell-adhesion mechanisms in vivo.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: Recent studies have shown that the binding of the amyloid protein precursor (APP) of Alzheimer's disease to heparan sulfate proteoglycans (HSPGs) can modulate a neurite outgrowth-promoting function associated with APP. We used three different approaches to identify heparin-binding domains in APP. First, as heparin-binding domains are likely to be within highly folded regions of proteins, we analyzed the secondary structure of APP using several predictive algorithms. This analysis showed that two regions of APP695 contain a high degree of secondary structure, and clusters of basic residues, considered mandatory for heparin binding, were found principally within these regions. To determine which domains of APP bind heparin, deletion mutants of APP695 were prepared and analyzed for binding to a heparin affinity column. The results suggested that there must be at least two distinct heparin-binding regions in APP. To identify novel heparin-binding regions, peptides homologous to candidate heparin-binding domains were analyzed for their ability to bind heparin. These experiments suggested that APP contains at least four heparin-binding domains. The presence of more than one heparin-binding domain on APP suggests the possibility that APP may interact with more than one type of glycosaminoglycan.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: We and colleagues have shown that the amyloid protein precursor of Alzheimer’s disease (APP) is distributed along the surface of neurites of fixed but nonpermeabilized neurons in primary culture in a segmental pattern, which shows colocalization with some markers of adhesion patches. This is in contrast to the diffuse pattern of immunoreactivity seen after permeabilization. We have also recently demonstrated that the APP in these surface patches is likely to be integral to the membrane rather than secreted and re-adsorbed, based on alkali stripping experiments and on soluble APP adsorption experiments. Total cellular APP has previously been shown to have a short half-life of ≈ 30–60 min. We confirm this in neurons in primary culture in pulse-chase experiments using short labelling times. Additionally, we provide evidence that a separate, stable pool of neuronal APP can be demonstrated in pulse-chase experiments using long labelling times. Experiments involving inhibition of protein synthesis suggest that this corresponds with the surface, segmental pool. Metabolic labelling followed by surface biotinylation and two-stage precipitation demonstrates that the surface APP is trans-membrane and full-length (not carboxyl-terminal truncated), and confirms that the surface APP belongs to the stable pool. This two-stage procedure is necessary as the surface APP appears to be present in low copy number, and is difficult to detect by direct labelling. This information is consistent with a role for APP in stable cell-matrix or cell–cell interactions.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: One of the characteristic changes that occurs in Alzheimer's disease is the loss of acetylcholinesterase (AChE) from both cholinergic and noncholinergic neurons of the brain. However, AChE activity is increased around amyloid plaques. This increase in AChE may be of significance for therapeutic strategies using AChE inhibitors. The aim of this study was to examine the effect of amyloid β-protein (Aβ), the major component of amyloid plaques, on AChE expression. Aβ peptides spanning residues 1–40 or 25–35 increased AChE activity in P19 embryonal carcinoma cells. A peptide containing a scrambled Aβ25–35 sequence did not stimulate AChE expression. To examine the possibility that the increase in AChE expression was mediated by an influx of calcium through voltage-dependent calcium channels (VDCCs), drugs acting on VDCCs were tested for their effects. Inhibitors of L-type VDCCs (diltiazem, nifedipine, and verapamil), but not N- or P- or Q-type VDCCs, resulted in a decrease in AChE expression. Agonists of L-type VDCCs (maitotoxin and S(−)-Bay K 8644) increased AChE expression. As L-type VDCCs are known to be modulated by cyclic AMP-dependent protein kinase, the effect of the adenylate cyclase activator forskolin was also examined. Forskolin stimulated AChE expression, an action that was blocked by the L-type VDCC antagonist nifedipine. The Aβ25–35-induced increase in AChE expression was mediated by an L-type VDCC, as the effect was also blocked by nifedipine. The results suggest that the increase in AChE expression around amyloid plaques could be due to a disturbance in calcium homeostasis involving the opening of L-type VDCCs.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...