GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-04-18
    Description: Visible results were obtained by the working groups in Kiel on the first four aspects of the project, resulting in improvements of the quantitative knowledge of key processes and key regions in the Atlantic Ocean. New ocean and coupled ocean-atmosphere models were analyzed with regard to seasonal and decadal climate changes, as well as optimization techniques. In addition, the influence of circulation variability on oceanic CO2 uptake was investigated. Intense field studies were carried out successfully in two regions: The measurements obtained in the equatorial Atlantic serve as the basis for a better understanding of the role of the tropical Atlantic for climate fluctuations in the Atlantic in general, and also provide predictability indicators for seasonal forecasts. The second focal area of field work was the southern region of the Labrador Sea near 53°N where different components of the North Atlantic Deep Water merge to form the deep western boundary current (DWBC). Here a mooring array has been deployed for the past 13 years to monitor this branch of the thermohaline circulation exiting the Labrador Sea. In collaboration with other national and international large-scale observations (ship-based measurements, Argo floats, etc.) and modeling efforts, the field work carried out by the Kiel working groups provides a significant contribution toward a sustainable regional ocean-climate analysis system.
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-02-07
    Description: Changes in the Atlantic Meridional Overturning Circulation (AMOC) represent a crucial component of Northern Hemisphere climate variability. In modelling studies decadal overturning variability has been attributed to the intensity of deep winter convection in the Labrador Sea. This linkage is challenged by transport observations at sections across the subpolar gyre. Here we report simulations with an eddy-rich ocean model which captures the observed concentration of downwelling in the northeastern Atlantic and the negligible impact of interannual variations in Labrador Sea convection during the last decade. However, the exceptionally cold winters in the Labrador Sea during the first half of the 1990s induced a positive AMOC anomaly of more than 20%, mainly by augmenting the downwelling in the northeastern North Atlantic. The remote effect of excessive Labrador Sea buoyancy forcing is related to rapid spreading of mid-depth density anomalies into the Irminger Sea and their entrainment into the deep boundary current off Greenland.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-08-01
    Description: The Greenland ice sheet has experienced increasing mass loss since the 1990s1, 2. The enhanced freshwater flux due to both surface melt and outlet glacier discharge is assuming an increasingly important role in the changing freshwater budget of the subarctic Atlantic3. The sustained and increasing freshwater fluxes from Greenland to the surface ocean could lead to a suppression of deep winter convection in the Labrador Sea, with potential ramifications for the strength of the Atlantic meridional overturning circulation4, 5, 6. Here we assess the impact of the increases in the freshwater fluxes, reconstructed with full spatial resolution3, using a global ocean circulation model with a grid spacing fine enough to capture the small-scale, eddying transport processes in the subpolar North Atlantic. Our simulations suggest that the invasion of meltwater from the West Greenland shelf has initiated a gradual freshening trend at the surface of the Labrador Sea. Although the freshening is still smaller than the variability associated with the episodic ‘great salinity anomalies’, the accumulation of meltwater may become large enough to progressively dampen the deep winter convection in the coming years. We conclude that the freshwater anomaly has not yet had a significant impact on the Atlantic meridional overturning circulation.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...