GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    IFM-GEOMAR
    In:  IFM-GEOMAR Annual Report, 2008 . pp. 12-13.
    Publication Date: 2018-10-16
    Description: The Agulhas system transports warm and salty waters from the Indian to the Atlantic Ocean and therefore acts as a key element in the global oceanic circulation. Studies have shown that mesoscale processes are not only important for the correct description of the circulation around South Africa itself but also for its impact on the Gulf Stream system in the North Atlantic.
    Type: Article , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    IFM-GEOMAR
    In:  IFM-GEOMAR Annual Report, 2010 . pp. 22-23.
    Publication Date: 2018-10-16
    Description: Globally averaged sea level has risen by just under 10 cm during the last 50 years as a consequence of global warming. The rise, however, is not uniform, neither in time nor in space. Natural climate fluctuations and associated changes in the ocean currents have contributed to the inhomogeneity and is an important factor which will determine the pattern of future sea level rise. While research in the past years has focused on the global-mean trend and its attribution to the melting of glaciers and the thermal expansion of sea water under global warming, attention is shifting to the geographical pattern of sea level change. This is essential for coastal impact assessments, but has not been practical yet because ocean projections from current climate models widely diverge. The improvement of regional sea level prediction requires a better understanding of the underlying dynamical causes.
    Type: Article , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2020. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 47(22), (2020): e2020GL088692, doi:10.1029/2020GL088692.
    Description: Rapid increases in upper 700‐m Indian Ocean heat content (IOHC) since the 2000s have focused attention on its role during the recent global surface warming hiatus. Here, we use ocean model simulations to assess distinct multidecadal IOHC variations since the 1960s and explore the relative contributions from wind stress and buoyancy forcing regionally and with depth. Multidecadal wind forcing counteracted IOHC increases due to buoyancy forcing from the 1960s to the 1990s. Wind and buoyancy forcing contribute positively since the mid‐2000s, accounting for the drastic IOHC change. Distinct timing and structure of upper ocean temperature changes in the eastern and western Indian Ocean are linked to the pathway how multidecadal wind forcing associated with the Interdecadal Pacific Oscillation is transmitted and affects IOHC through local and remote winds. Progressive shoaling of the equatorial thermocline—of importance for low‐frequency variations in Indian Ocean Dipole occurrence—appears to be dominated by multidecadal variations in wind forcing.
    Description: This work was supported by the Alexander von Humboldt Foundation (CCU and SR), The Investment in Science Fund given primarily by WHOI Trustee and Corporation Members (CCU), James E. and Barbara V. Moltz Fellowship for climate‐related research (CCU), the ARC Centre of Excellence for Climate Extremes (CE170100023; CCU and MHE), ARC DP150101331 (CCU and MHE), and PW was supported through grant IndoArchipel from the Deutsche Forschungsgemeinschaft (DFG) as part of the Special Priority Program (SPP)‐1889”Regional Sea Level Change and Society” (SeaLevel).
    Description: 2021-04-26
    Keywords: Decadal variability ; Hiatus ; Indian Ocean ; Ocean heat content ; Ocean models ; Pacific Ocean
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...