GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Copernicus Publications (EGU)  (2)
  • ASLO (Association for the Sciences of Limnology and Oceanography)  (1)
Publikationsart
Verlag/Herausgeber
  • Copernicus Publications (EGU)  (2)
  • ASLO (Association for the Sciences of Limnology and Oceanography)  (1)
  • Elsevier  (1)
  • Ossolineum  (1)
  • Wiley  (1)
Erscheinungszeitraum
  • 1
    Publikationsdatum: 2020-02-06
    Beschreibung: The Baltic Sea is a seasonally ice-covered marginal sea in northern Europe with intense wintertime ship traffic and a sensitive ecosystem. Understanding and modeling the evolution of the sea-ice pack is important for climate effect studies and forecasting purposes. Here we present and evaluate the sea-ice component of a new NEMO–LIM3.6-based ocean–sea-ice setup for the North Sea and Baltic Sea region (NEMO-Nordic). The setup includes a new depth-based fast-ice parametrization for the Baltic Sea. The evaluation focuses on long-term statistics, from a 45-year long hindcast, although short-term daily performance is also briefly evaluated. We show that NEMO-Nordic is well suited for simulating the mean sea-ice extent, concentration, and thickness as compared to the best available observational data set. The variability of the annual maximum Baltic Sea ice extent is well in line with the observations, but the 1961–2006 trend is underestimated. Capturing the correct ice thickness distribution is more challenging. Based on the simulated ice thickness distribution we estimate the undeformed and deformed ice thickness and concentration in the Baltic Sea, which compares reasonably well with observations.
    Materialart: Article , PeerReviewed
    Format: text
    Format: archive
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2023-02-08
    Beschreibung: Eutrophication and climate change will affect habitats of species and more generally, the structure and functioning of ecosystems. We used a three‐dimensional, coupled hydrodynamic‐biogeochemical model to investigate potential future changes in size and location of potential habitats of marine species during the 21st century in a large, eutrophicated brackish sea (the Baltic Sea, northern Europe). We conducted scenario projections under the combined impact of nutrient load and climate change. Possible future changes of the eutrophication state of this sea were also assessed through two policy‐relevant indicators. The results imply a physiologically more stressful environment for marine species by the end of the 21st century: volumes of higher salinity water become more hypoxic/anoxic and the volumes of low salinity, oxic water increase. For example, these results impact and reduce cod reproductive habitats. The decrease is mainly climate change induced in the Baltic basins less directly influenced by inflows of saline, oxic water to the Baltic Sea (E Gotland and Gdansk Basins). In basins more directly influenced by such inflows (Arkona and Bornholm Basins), the combined effect from climate change and nutrient loads is of importance. The results for the eutrophication state indicators clearly indicate a more eutrophic sea than at present without a rigorous nutrient reduction policy, that is, the necessity to implement the Baltic Sea Action Plan. The multidisciplinary, multiscenario assessment strategy presented here provides a useful concept for the evaluation of impacts from cumulative stresses of changing climate and socioeconomic pressures on future eutrophication indicators and habitats of marine species.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2022-01-31
    Beschreibung: We present Nemo-Nordic, a Baltic and North Sea model based on the NEMO ocean engine. Surrounded by highly industrialized countries, the Baltic and North seas and their assets associated with shipping, fishing and tourism are vulnerable to anthropogenic pressure and climate change. Ocean models providing reliable forecasts and enabling climatic studies are important tools for the shipping infrastructure and to get a better understanding of the effects of climate change on the marine ecosystems. Nemo-Nordic is intended to be a tool for both short-term and long-term simulations and to be used for ocean forecasting as well as process and climatic studies. Here, the scientific and technical choices within Nemo-Nordic are introduced, and the reasons behind the design of the model and its domain and the inclusion of the two seas are explained. The model's ability to represent barotropic and baroclinic dynamics, as well as the vertical structure of the water column, is presented. Biases are shown and discussed. The short-term capabilities of the model are presented, especially its capabilities to represent sea level on an hourly timescale with a high degree of accuracy. We also show that the model can represent longer timescales, with a focus on the major Baltic inflows and the variability in deep-water salinity in the Baltic Sea.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...