GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Physical Oceanography, 27 (1). pp. 153-174.
    Publication Date: 2018-04-06
    Description: Data from almost five years of current meter moorings located across the Bahamas Escarpment at 26.5 degrees N are used to investigate meridional heat transport variability in the section and its impact on transatlantic heat Aux. Estimates of heat transport derived from the moored arrays are compared to results from the Community Modeling Effort (CME) Atlantic basin model and to historical hydrographic section data. A large fraction of the entire transatlantic heat flux is observed in this western boundary region, due to the opposing warm and cold water flows associated with the Antilles Current in the thermocline and the deep western boundary current at depth. Local heat transport time series derived from the moored arrays exhibit large variability over a range of +/- 2 PW relative to 0 degrees C, on timescales of roughly 100 days. An annual cycle of local heat transport with a range of 1.4 PW is observed with a summer maximum and fall minimum, qualitatively similar to CME model results. Breakdown of the total heat transport into conventional ''barotropic'' (depth averaged) and ''baroclinic'' (transport independent) components indicates an approximately equal contribution from both components. The annual mean value of the baroclinic hear transport in the western boundary layer is 0.53 +/- 0.08 PW northward, of opposite direction and more than half the magnitude of the total southward baroclinic heat transport between Africa and the Bahamas (about -0.8 PW) derived from transatlantic sections. Combination of the results from the moored arrays with Levitus climatology in the interior and historical Florida Current data yields an estimate of 1.44 +/- 0.33 PW for the annual mean transatlantic heat Aux at 26.5 degrees N, approximately 0.2 PW greater than the previously accepted value of 1.2-1.3 PW at this latitude.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Physical Oceanography, 31 (4). pp. 1031-1053.
    Publication Date: 2018-04-06
    Description: Observations from the WOCE PCM-1 moored current meter array east of Taiwan for the period September 1994 to May 1996 are used to derive estimates of the Kuroshio transport at the entrance to the East China Sea. Three different methods of calculating the Kuroshio transport are employed and compared. These methods include 1) a “direct” method that uses conventional interpolation of the measured currents and extrapolation to the surface and bottom to estimate the current structure, 2) a “dynamic height” method in which moored temperature measurements from moorings on opposite sides of the channel are used to estimate dynamic height differences across the current and spatially averaged baroclinic transport profiles, and 3) an “adjusted geostrophic” method in which all moored temperature measurements within the array are used to estimate a relative geostrophic velocity field that is referenced and adjusted by the available direct current measurements. The first two methods are largely independent and are shown to produce very similar transport results. The latter two methods are particularly useful in situations where direct current measurements may have marginal resolution for accurate transport estimates. These methods should be generally applicable in other settings and illustrate the benefits of including a dynamic height measuring capability as a backup for conventional direct transport calculations. The mean transport of the Kuroshio over the 20-month duration of the experiment ranges from 20.7 to 22.1 Sv (1 Sv ≡ 106 m3 s−1) for the three methods, or within 1.3 Sv of each other. The overall mean transport for the Kuroshio is estimated to be 21.5 Sv with an uncertainty of 2.5 Sv. All methods show a similar range of variability of ±10 Sv with dominant timescales of several months. Fluctuations in the transport are shown to have a robust vertical structure, with over 90% of the transport variance explained by a single vertical mode. The moored transports are used to determine the relationship between Kuroshio transport and sea-level difference between Taiwan and the southern Ryukyu Islands, allowing for long-term monitoring of the Kuroshio inflow to the East China Sea.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Physical Oceanography, 34 . pp. 817-843.
    Publication Date: 2020-08-04
    Description: The current system east of the Grand Banks was intensely observed by World Ocean Circulation Experiment (WOCE) array ACM-6 during 1993–95 with eight moorings, reaching about 500 km out from the shelf edge and covering the water column from about 400-m depth to the bottom. More recently, a reduced array by the Institut für Meerskunde (IfM) at Kiel, Germany, of four moorings was deployed during 1999–2001, focusing on the deep-water flow near the western continental slope. Both sets of moored time series, each about 22 months long, are combined here for a mean current boundary section, and both arrays are analyzed for the variability of currents and transports. A mean hydrographic section is derived from seven ship surveys and is used for geostrophic upper-layer extrapolation and isopycnal subdivision of the mean transports into deep-water classes. The offshore part of the combined section is dominated by the deep-reaching North Atlantic Current (NAC) with currents still at 10 cm s−1 near the bottom and a total northward transport of about 140 Sv (Sv ≡ 106 m3 s−1), with the details depending on the method of surface extrapolation used. The mean flow along the western boundary was southward with the section-mean North Atlantic Deep Water outflow determined to be 12 Sv below the σθ = 27.74 kg m−3 isopycnal. However, east of the deep western boundary current (DWBC), the deep NAC carries a transport of 51 Sv northward below σθ = 27.74 kg m−3, resulting in a large net northward flow in the western part of the basin. From watermass signatures it is concluded that the deep NAC is not a direct recirculation of DWBC water masses. Transport time series for the DWBC variability are derived for both arrays. The variance is concentrated in the period range from 2 weeks to 2 months, but there are also variations at interannual and longer periods, with much of the DWBC variability being related to fluctuations and meandering of the NAC. A significant annual cycle is not recognizable in the combined current and transport time series of both arrays. The moored array results are compared with other evidence on deep outflow and recirculation, including recent models of different types and complexity.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Physical Oceanography, 35 . pp. 2031-2053.
    Publication Date: 2020-08-04
    Description: Repeated shipboard observation sections across the boundary flow off northeastern Brazil as well as acoustic Doppler current profiler (ADCP) and current-meter records from a moored boundary array deployed during 2000–04 near 11°S are analyzed here for both the northward warm water flow by the North Brazil Undercurrent (NBUC) above approximately 1100 m and the southward flow of North Atlantic Deep Water (NADW) underneath. At 5°S, the mean from nine sections yields an NBUC transport of 26.5 ± 3.7 Sv (Sv ≡ 106 m3 s−1) along the boundary; at 11°S the mean NBUC transport from five sections is 25.4 ± 7.4 Sv, confirming that the NBUC is already well developed at 11°S. At both latitudes a persistent offshore southward recirculation between 200- and 1100-m depth reduces the net northward warm water flow through the 5°S section (west of 31.5°W) to 22.1 ± 5.3 Sv and through the 11°S section to 21.7 ± 4.1 Sv (west of 32.0°W). The 4-yr-long NBUC transport time series from 11°S yields a seasonal cycle of 2.5 Sv amplitude with its northward maximum in July. Interannual NBUC transport variations are small, varying only by ±1.2 Sv during the four years, with no detectable trend. The southward flow of NADW within the deep western boundary current at 5°S is 25.5 ± 8.3 Sv with an offshore northward recirculation, yielding a nine-section mean of 20.3 ± 10.1 Sv west of 31.5°W. For Antarctic Bottom Water, a net northward flow of 4.4 ± 3.0 Sv is determined at 5°S. For the 11°S section, the moored array data show a pronounced energy maximum at 60–70-day period in the NADW depth range, which was identified in related work as deep eddies translating southward along the boundary. Based on a kinematic eddy model fit to the first half of the moored time series, the mean NADW transfer by the deep eddies at 11°S was estimated to be about 17 Sv. Given the large interannual variability of the deep near-boundary transport time series, which ranged from 14 to 24 Sv, the 11°S mean was considered to be not distinguishable from the mean at 5°S
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...