GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    facet.materialart.
    Unbekannt
    AMS (American Meteorological Society)
    In:  Journal of Physical Oceanography, 40 (8). pp. 1784-1801.
    Publikationsdatum: 2020-08-04
    Beschreibung: Changes in the ventilation of the oxygen minimum zone (OMZ) of the tropical North Atlantic are studied using oceanographic data from 18 research cruises carried out between 28.5° and 23°W during 1999–2008 as well as historical data referring to the period 1972–85. In the core of the OMZ at about 400-m depth, a highly significant oxygen decrease of about 15 μmol kg−1 is found between the two periods. During the same time interval, the salinity at the oxygen minimum increased by about 0.1. Above the core of the OMZ, within the central water layer, oxygen decreased too, but salinity changed only slightly or even decreased. The scatter in the local oxygen–salinity relations decreased from the earlier to the later period suggesting a reduced filamentation due to mesoscale eddies and/or zonal jets acting on the background gradients. Here it is suggested that latitudinally alternating zonal jets with observed amplitudes of a few centimeters per second in the depth range of the OMZ contribute to the ventilation of the OMZ. A conceptual model of the ventilation of the OMZ is used to corroborate the hypothesis that changes in the strength of zonal jets affect mean oxygen levels in the OMZ. According to the model, a weakening of zonal jets, which is in general agreement with observed hydrographic evidences, is associated with a reduction of the mean oxygen levels that could significantly contribute to the observed deoxygenation of the North Atlantic OMZ.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    facet.materialart.
    Unbekannt
    AMS (American Meteorological Society)
    In:  Journal of Physical Oceanography, 31 . pp. 1287-1303.
    Publikationsdatum: 2018-04-06
    Beschreibung: A general circulation ocean model has been used to study the formation and propagation mechanisms of North Atlantic Oscillation (NAO)-generated temperature anomalies along the pathway of the North Atlantic Current (NAC). The NAO-like wind forcing generates temperature anomalies in the upper 440 m that propagate along the pathway of the NAC in general agreement with the observations. The analysis of individual components of the ocean heat budget reveals that the anomalies are primarily generated by the wind stress anomaly-induced oceanic heat transport divergence. After their generation they are advected with the mean current. Surface heat flux anomalies account for only one-third of the total temperature changes. Along the pathway of the NAC temperature anomalies of opposite signs are formed in the first and second halves of the pathway, a pattern called here the North Atlantic dipole (NAD). The response of the ocean depends fundamentally on Rt = (L/υ)/τ, the ratio between the time it takes for anomalies to propagate along the NAC [(L/υ) 10 years] compared to the forcing period τ. The authors find that for NAO periods shorter than 4 years (Rt 〉 1) the response in the subpolar region is mainly determined by the local forcing. For NAO periods longer than 32 years (Rt 〈 1); however, the SST anomalies in the northeastern part of the NAD become controlled by ocean advection. In the subpolar region maximal amplitudes of the temperature response are found for intermediate (decadal) periods (Rt 1) where the propagation of temperature anomalies constructively interferes with the local forcing. A comparison of the NAO-generated propagating temperature anomalies with those found in observations will be discussed.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    facet.materialart.
    Unbekannt
    AMS (American Meteorological Society)
    In:  Journal of Atmospheric and Oceanic Technology, 36 . pp. 281-296.
    Publikationsdatum: 2022-01-31
    Beschreibung: The turbulent dissipation rate ɛ is a key parameter to many oceanographic processes. Recently gliders have been increasingly used as a carrier for microstructure sensors. Compared to conventional ship-based methods, glider-based microstructure observations allow for long duration measurements under adverse weather conditions, and at lower costs. The incident water velocity U is an input parameter for the calculation of the dissipation rate. Since U can not be measured using the standard glider sensor setup, the parameter is normally computed from a steady-state glider flight model. As ɛ scales with U2 or U4, depending whether it is computed from temperature or shear microstructure, flight model errors can introduce a significant bias. This study is the first to use measurements of in-situ glider flight, obtained with a profiling Doppler velocity log and an electromagnetic current meter, to test and calibrate a flight model, extended to include inertial terms. Compared to a previously suggested flight model, the calibrated model removes a bias of approximately 1 cm s−1 in the incident water velocity, which translates to roughly a factor of 1.2 in estimates of the dissipation rate. The results further indicate that 90% of the estimates of the dissipation rate from the calibrated model are within a factor of 1.1 and 1.2 for measurements derived from microstructure temperature sensors and shear probes, respectively. We further outline the range of applicability of the flight model.
    Materialart: Article , PeerReviewed
    Format: text
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    facet.materialart.
    Unbekannt
    AMS (American Meteorological Society)
    In:  Journal of Climate, 13 . pp. 2845-2862.
    Publikationsdatum: 2018-07-24
    Beschreibung: Numerical experiments are performed to examine the causes of variability of Atlantic Ocean SST during the period covered by the National Centers for Environmental Prediction-National Center for Atmospheric Research (NCEP-NCAR) reanalysis (1958-98). Three ocean models are used. Two are mixed layer models: one with a 75-m-deep mixed layer and the other with a variable depth mixed layer. For both mixed layer models the ocean heat transports are assumed to remain at their diagnosed climatological values. The third model is a full dynamical ocean general circulation model (GCM). All models are coupled to a model of the subcloud atmospheric mixed layer (AML). The AML model computes the air temperature and humidity by balancing surface fluxes, radiative cooling, entrainment at cloud base, advection and eddy heat, and moisture transports. The models are forced with NCEP-NCAR monthly mean winds from 1958 to 1998. The ocean mixed layer models adequately reproduce the dominant pattern of Atlantic Ocean climate variability in both its spatial pattern and time dependence. This pattern is the familiar tripole of alternating zonal bands of SST anomalies stretching between the subpolar gyre and the subtropics. This SST pattern goes along with a wind pattern that corresponds to the North Atlantic Oscillation (NAO). Analysis of the results reveals that changes in wind speed create the subtropical SST anomalies while at higher latitudes changes in advection of temperature and humidity and changes in atmospheric eddy fluxes are important. An observational analysis of the boundary layer energy balance is also performed. Anomalous atmospheric eddy heat fluxes are very closely tied to the SST anomalies. Anomalous horizontal eddy fluxes damp the SST anomalies while anomalous vertical eddy fluxes tend to cool the entire midlatitude North Atlantic during the NAO's high-index phase with the maximum cooling exactly where the SST gradient is strengthened the most. The SSTs simulated by the ocean mixed layer model are compared with those simulated by the dynamic ocean GCM. In the far North Atlantic Ocean anomalous ocean heat transports are equally important as surface fluxes in generating SST anomalies and they act constructively. The anomalous heat transports are associated with anomalous Ekman drifts and are consequently in phase with the changing surface fluxes. Elsewhere changes in surface fluxes dominate over changes in ocean heat transport. These results suggest that almost all of the variability of the North Atlantic SST in the last four decades can be explained as a response to changes in surface fluxes caused by changes in the atmospheric circulation. Changes in the mean atmospheric circulation force the SST while atmospheric eddy fluxes dampen the SST. Both the interannual variability and the longer timescale changes can be explained in this way. While the authors were unable to find evidence for changes in ocean heat transport systematically leading or lagging development of SST anomalies, this leaves open the problem of explaining the causes of the low-frequency variability. Possible causes are discussed with reference to the modeling results.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...