GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Climate, 27 (21). pp. 8135-8150.
    Publication Date: 2020-08-04
    Description: Sea surface temperature (SST) anomalies in the eastern equatorial Atlantic are connected to modulations in the strength of the South Atlantic subtropical high-pressure system, referred to as the South Atlantic Anticyclone (SAA). Using ocean and atmosphere reanalysis products we show here that the strength of the SAA from February to May impacts the timing of the cold tongue onset and the intensity of its development in the eastern equatorial Atlantic (EEA) via anomalous tropical wind power. This modulation of the timing and amplitude of the seasonal cold tongue development manifests as anomalous SST events peaking between June and August. The timing and impact of this connection is not completely symmetric for warm and cold events. For cold events, an anomalously strong SAA in February and March leads to positive wind power anomalies from February to June resulting in an early cold tongue onset and subsequent cold SST anomalies in June and July. For warm events the anomalously weak SAA persists until May, generating negative wind power anomalies that lead to a late cold tongue onset as well as a suppression of the cold tongue development and associated warm SST anomalies. Mechanisms by which SAA induced wind power variations south of the equator influence EEA SST are discussed, including ocean adjustment via Rossby and Kelvin wave propagation, meridional advection, and local intraseasonal wind variations
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Climate, 27 (7). pp. 2577-2587.
    Publication Date: 2014-10-22
    Description: A decadal change in the character of ENSO was observed around year 2000 toward weaker-amplitude, higher-frequency events with an increased occurrence of central Pacific El Niños. Here these changes are assessed in terms of the Bjerknes stability index (BJ index), which is a measure of the growth rate of ENSO-related SST anomalies. The individual terms of the index are calculated from ocean reanalysis products separately for the time periods 1980–99 and 2000–10. The spread between the products is large, but they show a robust weakening of the thermocline feedback due to a reduced thermocline slope response to anomalous zonal wind stress as well as a weakened wind stress response to eastern equatorial Pacific SST anomalies. These changes are consistent with changes in the background state of the tropical Pacific: cooler mean SST in the eastern and central equatorial Pacific results in reduced convection there together with a westward shift in the ascending branch of the Walker circulation. This shift leads to a weakening in the relationship between eastern Pacific SST and longitudinally averaged equatorial zonal wind stress. Also, despite a steeper mean thermocline slope in the more recent period, the thermocline slope response to wind stress anomalies weakened due to a smaller zonal wind fetch that results from ENSO-related wind anomalies being more confined to the western basin. As a result, the total BJ index is more negative, corresponding to a more strongly damped system in the past decade compared to the 1980s and 1990s.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    American Meteorological Society
    In:  Journal of Climate, 26 (16). pp. 5965-5980.
    Publication Date: 2020-07-24
    Description: El Niño–Southern Oscillation (ENSO) in the Pacific and the analogous Atlantic Niño mode are generated by processes involving coupled ocean–atmosphere interactions known as the Bjerknes feedback. It has been argued that the Atlantic Niño mode is more strongly damped than ENSO, which is presumed to be closer to neutrally stable. In this study the stability of ENSO and the Atlantic Niño mode is compared via an analysis of the Bjerknes stability index. This index is based on recharge oscillator theory and can be interpreted as the growth rate for coupled modes of ocean–atmosphere variability. Using observational data, an ocean reanalysis product, and output from an ocean general circulation model, the individual terms of the Bjerknes index are calculated for the first time for the Atlantic and then compared to results for the Pacific. Positive thermocline feedbacks in response to wind stress forcing favor anomaly growth in both basins, but they are twice as large in the Pacific compared to the Atlantic. Thermocline feedback is related to the fetch of the zonal winds, which is much greater in the equatorial Pacific than in the equatorial Atlantic due to larger basin size. Negative feedbacks are dominated by thermal damping of sea surface temperature anomalies in both basins. Overall, it is found that both ENSO and the Atlantic Niño mode are damped oscillators, but the Atlantic is more strongly damped than the Pacific primarily because of the weaker thermocline feedback.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-07-23
    Description: The ECMWF-T21 atmospheric GCM is forced by observed near-global SST from January 1970 to December 1985. Its response in low level winds and surface wind stress over the Pacific Ocean is compared with various observations. The time dependent SST clearly induces a Southern Oscillation (SO) in the model run which is apparent in the time series of all variables considered. The phase of the GCM SO is as observed, but its low frequency variance is too weak and is mainly confined to the western Pacific. Because of the GCM's use as the atmospheric component in a coupled ocean-atmosphere model, the response of an equatorial oceanic primitive equation model to both the modeled and observed wind stress is examined. The ocean model responds to the full observed wind stress forcing in a manner almost identical to that when it is forced by the first two low frequency EOFs of the observations only. These first two EOFs describe a regular eastward propagation of the SO signal from the western Pacific to the central Pacific within about a year. The ocean model's response to the modeled wind stress is too weak and similar to the response when the observed forcing is truncated to the first EOF only. In other words, the observed SO appears as a sequence of propagating patterns but the simulated SO as a standing oscillation. The nature of the deviation of the simulated wind stress from observations is analyzed by means of Model Output Statistics (MOS). It is shown that a MOS-corrected simulated wind stress, if used to force an ocean GCM, leads to a significant enhancement of low frequency SST variance, which is most pronounced in the western Pacific.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-02-07
    Description: The El Niño-Southern Oscillation (ENSO) is the dominant mode of interannual climate variability on the planet, with far-reaching global impacts. It is therefore key to evaluate ENSO simulations in state-of-the-art numerical models used to study past, present and future climate. Recently, the Pacific Region Panel of the International Climate and Ocean - Variability, Predictability, and Change (CLIVAR) Project, as a part of the World Climate Research Programme (WCRP), led a community-wide effort to evaluate the simulation of ENSO variability, teleconnections and processes in climate models. The new CLIVAR 2020 ENSO metrics package enables model diagnosis, comparison, and evaluation to (1) highlight aspects that need improvement; (2) monitor progress across model generations; (3) help in selecting models that are well suited for particular analyses; (4) reveal links between various model biases, illuminating the impacts of those biases on ENSO and its sensitivity to climate change; and to (5) advance ENSO literacy. By interfacing with existing model evaluation tools, the ENSO metrics package enables rapid analysis of multi-petabyte databases of simulations, such as those generated by the Coupled Model Intercomparison Project phases 5 (CMIP5) and 6 (CMIP6). The CMIP6 models are found to significantly outperform those from CMIP5 for 8 out of 24 ENSO-relevant metrics, with most CMIP6 models showing improved tropical Pacific seasonality and ENSO teleconnections. Only one ENSO metric is significantly degraded in CMIP6, namely the coupling between the ocean surface and subsurface temperature anomalies, while the majority of metrics remain unchanged.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2011. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 41 (2011): 1741–1755, doi:10.1175/2011JPO4437.1.
    Description: An in-depth data analysis was conducted to understand the occurrence of a strong sea surface temperature (SST) front in the central Bay of Bengal before the formation of Cyclone Nargis in April 2008. Nargis changed its course after encountering the front and tracked along the front until making landfall. One unique feature of this SST front was its coupling with high sea surface height anomalies (SSHAs), which is unusual for a basin where SST is normally uncorrelated with SSHA. The high SSHAs were associated with downwelling Rossby waves, and the interaction between downwelling and surface fresh waters was a key mechanism to account for the observed SST–SSHA coupling. The near-surface salinity field in the bay is characterized by strong stratification and a pronounced horizontal gradient, with low salinity in the northeast. During the passage of downwelling Rossby waves, freshening of the surface layer was observed when surface velocities were southwestward. Horizontal convergence of freshwater associated with downwelling Rossby waves increased the buoyancy of the upper layer and caused the mixed layer to shoal to within a few meters of the surface. Surface heating trapped in the thin mixed layer caused the fresh layer to warm, whereas the increase in buoyancy from low-salinity waters enhanced the high SSHA associated with Rossby waves. Thus, high SST coincided with high SSHA. The dominant role of salinity in controlling high SSHA suggests that caution should be exercised when computing hurricane heat potential in the bay from SSHA. This situation is different from most tropical oceans, where temperature has the dominant effect on SSHA.
    Description: This work was supported by the NOAA/Office of Climate Observation (OCO) program.
    Keywords: Rossby waves ; Sea surface temperature ; Sea/ocean surface
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2018. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Bulletin of the American Meteorological Society 99, Suppl. S (2018): S21-S26, doi:10.1175/BAMS-D-17-0128.1.
    Description: NOAA Coral Reef Conservation Program; National Science Foundation OCE 1537338, OCE 1605365, OCE 1031971
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2009. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Bulletin of the American Meteorological Society 90 (2009): 1337-1350, doi:10.1175/2008BAMS2499.1.
    Description: The Vasco—Cirene program ex-plores how strong air—sea inter-actions promoted by the shallow thermocline and high sea surface temperature in the Seychelles—Chagos thermocline ridge results in marked variability at synoptic, intraseasonal, and interannual time scales. The Cirene oceano-graphic cruise collected oceanic, atmospheric, and air—sea flux observations in this region in Jan-uary—February 2007. The contem-poraneous Vasco field experiment complemented these measure-ments with balloon deployments from the Seychelles. Cirene also contributed to the development of the Indian Ocean observing system via deployment of a moor-ing and 12 Argo profilers. Unusual conditions prevailed in the Indian Ocean during Janu-ary and February 2007, following the Indian Ocean dipole climate anomaly of late 2006. Cirene measurements show that the Seychelles—Chagos thermocline ridge had higher-than-usual heat content with subsurface anomalies up to 7°C. The ocean surface was warmer and fresher than average, and unusual eastward currents prevailed down to 800 m. These anomalous conditions had a major impact on tuna fishing in early 2007. Our dataset also sampled the genesis and maturation of Tropical Cyclone Dora, including high surface temperatures and a strong diurnal cycle before the cyclone, followed by a 1.5°C cool-ing over 10 days. Balloonborne instruments sampled the surface and boundary layer dynamics of Dora. We observed small-scale structures like dry-air layers in the atmosphere and diurnal warm layers in the near-surface ocean. The Cirene data will quantify the impact of these finescale features on the upper-ocean heat budget and atmospheric deep convection.
    Description: CNES funded the Vasco part of the experiment; INSU funded the Cirene part. R/V Suroît is an Ifremer ship. The contributions from ODU, WHOI, and FOI (Sweden) are supported by the National Science Foundation under Grant Number 0525657. The participation of the University of Miami group was funded though NASA (NNG04HZ33C). PMEL participation was supported through NOAA’s Office of Climate Observation.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-05-25
    Description: As part of the calibration/validation effort for NASA's Scatterometer (NSCAT) we compare the satellite data to winds measured at the sea surface with an array of buoys moored in the equatorial Pacific Ocean. The NSCAT data record runs from September, 1996 through the end of June, 1997. The raw NSCAT data, radar backscatter, is converted to wind vectors at 10 meters above the surface assuming a neutrally stratified atmosphere, using the NSCAT-1 and NSCAT-2 model functions. The surface winds were measured directly by the TAO (Tropical Atmosphere Ocean) buoy array which spans the width of the equatorial Pacific within about 8° of the equator. The buoy program and data archive are maintained by the Pacific Marine Environmental Laboratory, at the National Oceanic and Atmospheric Administration, in collaboration with institutions in Japan, France and Taiwan. We also use data from two buoys maintained by the Woods Hole Oceanographic Institution located along 125°W. Since the buoy winds are measured at various heights above the surface, they are adjusted for both height and atmospheric surface layer stratification before comparisons are made to the NSCAT data. Co-location requirements include measurements within 100 km and 60 minutes of each other. There was a total of 5580 comparisons for the NSCAT-1 model function and 6364 comparisons for the NSCAT-2 model function. The NSCAT wind speeds, using the NSCAT-1 model function, are lower than the buoy wind speeds by about 0.54 ms-1 and have a 9.8° directional bias. The NSCAT-2 winds speeds were lower than the TAO buoy winds by only 0.08 ms-1, but still have the same 9.8° directional bias. The wind retrieval algorithm selects the vector closest to the buoy approximately 88% of the time. However, in the relatively low wind speed regime of the TAO array, approximately 4% of the wind vectors are more than 120° from the buoy wind.
    Description: Funding was provided by the National Aeronautics and Space Administration under Contract No. 957652.
    Keywords: Scatterometer ; Buoy ; Calibration validation ; Wind waves ; Radar meteorology ; NSCAT
    Repository Name: Woods Hole Open Access Server
    Type: Technical Report
    Format: 2672023 bytes
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-05-26
    Description: During May and June 2000, an intercomparison was made of buoy meteorological systems from the Woods Hole Oceanographic Institution (WHOI), the National Oceanographic and Atmospheric Administration (NOAA), Pacific Marine Environmental Laboratory (PMEL), and the Japanese Marine Science and Technology Center (JAMSTEC). Two WHOI systems mounted on a 3 m discus buoy, two PMEL systems mounted on separate buoy tower tops and one JAMSTEC system mounted on a wooden platform were lined parallel to, and 25 m from Nantucket Sound in Massachusetts. All systems used R. M. Young propeller anemometers, Rotronic relative humidity and air temperature sensors and Eppley short-wave radiation sensors. The PMEL and WHOI systems used R. M.Young self-siphoning rain gauges, while the JAMSTEC system used a Scientific Technology ORG-115 optical rain gauge. The PMEL and WHOI systems included an Eppley PIR long-wave sensor, while the JAMSTEC had no longwave sensor. The WHOI system used an AIR DB-1A barometric pressure sensor. PMEL and JAMSTEC systems used Paroscientific Digiquartz sensors. The Geophysical Instruments and Measurements Group (GIM) from Brookhaven National Laboratory (BNL) installed two Portable Radiation Package (PRP) systems that include Eppley short-wave and long-wave sensors on a platform near the site. It was apparent from the data that for most of the sensors, the correlation between data sets was better than the absolute agreement between them. The conclusions made were that the sensors and associated electronics from the three different laboratories performed comparably.
    Description: Funding was provided by the National Oceanic and Atmospheric Administration under Grant Number NA96GPO429.
    Keywords: Meteorological sensor intercomparison ; Meteorological sensor performance ; Moored instrument measurements
    Repository Name: Woods Hole Open Access Server
    Type: Technical Report
    Format: 9976018 bytes
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...