GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-09-23
    Description: A sediment core from the West Spitsbergen continental margin was studied to reconstruct climate and paleoceanographic variability during the last ~9 ka in the eastern Fram Strait. Our multiproxy evidence suggests that the establishment of the modern oceanographic configuration in the eastern Fram Strait occurred stepwise, in response to the postglacial sea-level rise and the related onset of modern sea-ice production on the shallow Siberian shelves. The late Early and Mid Holocene interval (9 to 5 ka) was generally characterized by relatively unstable conditions. High abundance of the subpolar planktic foraminifer species Turborotalita quinqueloba implies strong intensity of Atlantic Water (AW) inflow with high productivity and/or high AW temperatures, resulting in a strong heat flux to the Arctic. A series of short-lived cooling events (8.2, 6.9. and 6.1 ka) occurred superimposed on the warm late Early and Mid Holocene conditions. Our proxy data imply that simultaneous to the complete postglacial flooding of Arctic shallow shelves and the initiation of modern sea-ice production, strong advance of polar waters initiated modern oceanographic conditions in the eastern Fram Strait at ~5.2 ka. The Late Holocene was marked by the dominance of the polar planktic foraminifer species Neogloboquadrina pachyderma, a significant expansion of sea ice/icebergs, and strong stratification of the water column. Although planktic foraminiferal assemblages as well as sea surface and subsurface temperatures suggest a return of slightly strengthened advection of subsurface Atlantic Water after 3 ka, a relatively stable cold-water layer prevailed at the sea surface and the study site was probably located within the seasonally fluctuating marginal ice zone during the Neoglacial period.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Paleoceanography, 13 (2). pp. 193-204.
    Publication Date: 2017-05-10
    Description: Stable oxygen and-carbon isotope and sedimentological-paleontological investigations supported by accelerator mass spectrometry (14)C datings were carried out on cores from north of 85 degrees N in the eastern central Arctic Ocean. Significant changes in accumulation rates, provenance of ice-rafted debris (IRD), and planktic productivity over the past 80,000 years are documented. During peak glacials, i.e., oxygen isotope stages 4 and 2, the Arctic Ocean was covered by sea ice with decreased seasonal variation, limiting planktic productivity and bulk sedimentation rates. In early stage 3 and during Termination I, major deglaciations of the circum-Arctic regions caused lowered salinities and poor oxygenation of central Arctic surface waters. A meltwater spike and an associated IRD peak dated to similar to 14-12 (14)C ka can be traced over the southern Eurasian Basin of the Arctic Ocean. This event was associated with the early and rapid deglaciation of the marine-based Barents Sea Ice Sheet. A separate Termination Ib meltwater event is most conspicuous in the central Arctic and is associated with characteristic dolomitic carbonate IRD. This lithology suggests an origin of glacial ice from northern Canada and northern Greenland where lower Paleozoic platform carbonates crop extensively out.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-09-23
    Description: Three long sediment cores from the Makarov Basin have been subjected to detailed paleomagnetic and rock magnetic analyses. Investigated sediments are dominated by normal polarity including short reversal excursions, indicating that most of the sediments are of Brunhes age. In general, the recovered sediments show only low to moderate variability in concentration and grain size of the remanence-carrying minerals. Estimations of relative paleointensity variations yielded a well-documented succession of pronounced lows and highs that could be correlated to published reference curves. However, together with five accelerator mass spectrometry C-14 ages and an incomplete Be-10 record, still two different interpretations of the paleomagnetic data are possible, with long-term sedimentation rates of either 1.3 or 4 cm kyr(-1) However, both models implicate highly variable sedimentation rates of up to 10 cm kyr(-1), and abrupt changes in rock magnetic parameters might even indicate several hiatuses.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Paleoceanography, 10 (2). pp. 259-281.
    Publication Date: 2019-09-23
    Description: We reconstructed late Quaternary deep (3000–4100 m) and intermediate depth (1000–2500 m) paleoceanographic history of the Eurasian Basin, Arctic Ocean from ostracode assemblages in cores from the Lomonosov Ridge, Gakkel Ridge, Yermak Plateau, Morris Jesup Rise, and Amundsen and Makarov Basins obtained during the 1991 Polarstern cruise. Modern assemblages on ridges and plateaus between 1000 and 1500 m are characterized by abundant, relatively species-rich benthic ostracode assemblages, in part, reflecting the influence of high organic productivity and inflowing Atlantic water. In contrast, deep Arctic Eurasian basin assemblages have low abundance and low diversity and are dominated by Krithe and Cytheropteron reflecting faunal exchange with the Greenland Sea via the Fram Strait. Major faunal changes occurred in the Arctic during the last glacial/interglacial transition and the Holocene. Low-abundance, low-diversity assemblages from the Lomonosov and Gakkel Ridges in the Eurasian Basin from the last glacial period have modern analogs in cold, low-salinity, low-nutrient Greenland Sea deep water; glacial assemblages from the deep Nansen and Amundsen Basins have modern analogs in the deep Canada Basin. During Termination 1 at intermediate depths, diversity and abundance increased coincident with increased biogenic sediment, reflecting increased organic productivity, reduced sea-ice, and enhanced inflowing North Atlantic water. During deglaciation deep Nansen Basin assemblages were similar to those living today in the deep Greenland Sea, perhaps reflecting deepwater exchange via the Fram Strait. In the central Arctic, early Holocene faunas indicate weaker North Atlantic water inflow at middepths immediately following Termination 1, about 8500–7000 year B.P., followed by a period of strong Canada Basin water overflow across the Lomonosov Ridge into the Morris Jesup Rise area and central Arctic Ocean. Modern perennial sea-ice cover evolved over the last 4000–5000 years. Late Quaternary faunal changes reflect benthic habitat changes most likely caused by changes in the import of cold, deepwater of Greenland Sea origin and warmer and middepth Atlantic water to the Eurasian Basin through the Fram Strait, and export of Arctic Ocean deepwater.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-09-23
    Description: Oxygen and stable carbon isotope records along the growth direction on shells of the bivalve species Astarte borealis and Serripes groenlandicus reliably record all important aspects of the bottom water hydrography in the shallow southeastern Kara Sea, despite uncertainties about the isotopic range due to sparse sampling and the possibility of growth rate changes. Changing freshwater supply from the rivers Ob and Yenisei is the main cause for seasonal temperature and salinity variations near the three sampling locations in 20 to 70 m water depth as suggested by CTD measurements and modeling. Peak winter salinity of the simulated hydrographic data series and peak winter values in the isotope records follow negative trends, which indicate a freshening of the bottom water due to an increasing fraction of river water during the 1990s. This freshening affected the whole Kara Sea, and coincided with a lowering of regional air pressure gradients, as indicated by the declining Arctic oscillation index. The resulting weakening of the prevailing southwesterly winds diminished the inflow of saline Atlantic-derived water from the Barents Sea through the Kara Strait in the southwest, and, additionally, reduced the export of river water toward the north and northeast into the Arctic basin. Saline Atlantic-derived water thus was replaced by freshwater, which was successively accumulated in the Kara Sea and accordingly imprinted on the stable isotope composition of the bivalve shells. The 1990s freshening in the Kara Sea thus may be caused by natural variations rather than being a signal for global change.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-05-10
    Description: Ice sheets in the North American Arctic and, to a lesser extent, those in northern Eurasia calved large quantities of icebergs that drifted through Fram Strait into the Greenland Sea several times during the late Pleistocene. These icebergs deposited Fe oxide grains (45–250 mm) and coarse lithic clasts 〉250 mm matched to specific circum-Arctic sources. Four massive Arctic iceberg export events are identified from the Laurentide and the Innuitian ice sheets, between 14 and 34 ka (calendar years) in a sediment core from Fram Strait. These relatively short duration (〈1–4 kyr) events contain 3–5 times the background levels of Fe oxide grains. They began suddenly, as indicated by a steep rise in the number of grains matched to an ice sheet source, suggesting rapid purges of ice through Fram Strait, due perhaps to collapse of ice sheets. The larger events from the northwestern Laurentide ice sheet are preceded by events from the Innuitian ice sheet. Despite the chronological uncertainties, the Arctic export events appear to occur prior to Heinrich events.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-05-10
    Description: GLAMAP 2000 presents new reconstructions of the Atlantic's sea surface temperatures (SST) at the Last Glacial Maximum (LGM), defined at both 21,500–18,000 years B.P. (“Last Isotope Maximum”) and 23,000–19,000 years B.P. (maximum glacial sea level low stand and orbital minimum of solar insolation; EPILOG working group; see Mix et al. [2001]). These reconstructions use 275 sediment cores between the North Pole and 60°S with carefully defined chronostratigraphies. Four categories of core quality are distinguished. More than 100 core sections provide a glacial record with subcentennial- to multicentennial-scale resolution. SST estimates are based on a new set of almost 1000 reference samples of modern planktic foraminifera and on improved transfer-function techniques to deduce SST from census counts of microfossils, including radiolarians and diatoms. New proxies also serve to deduce sea ice boundaries. The GLAMAP 2000 SST patterns differ significantly in crucial regions from the CLIMAP [1981] reconstruction and thus are important in providing updated boundary conditions to initiate and validate computational models for climate prediction.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-05-10
    Description: On the basis of 52 sediment cores, analyzed and dated at high resolution, the paleoceanography and climate of the Last Glacial Maximum (LGM) were reconstructed in detail for the Fram Strait and the eastern and central Arctic Ocean. Sediment composition and stable isotope data suggest three distinct paleoenvironments: (1) a productive region in the eastern to central Fram Strait and along the northern Barents Sea continental margin characterized by Atlantic Water advection, frequent open water conditions, and occasional local meltwater supply and iceberg calving from the Barents Sea Ice Sheet; (2) an intermediate region in the southwestern Eurasian Basin (up to 84–85°N) and the western Fram Strait characterized by subsurface Atlantic Water advection and recirculation, a moderately high planktic productivity, and a perennial ice cover that breaks up only occasionally; and (3) a central Arctic region (north of 85°N in the Eurasian Basin) characterized by a low-salinity surface water layer and a thick ice cover that strongly reduces bioproduction and bulk sedimentation rates. Although the total inflow of Atlantic Water into the Arctic Ocean may have been reduced during the LGM, its impact on ice coverage and halocline structure in the Fram Strait and southwestern Eurasian Basin was strong.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-05-10
    Description: Lead (Pb), neodymium (Nd), and strontium (Sr) isotopic analyses were carried out on sediment leachates (reflecting the isotope composition of past seawater) and digests of the bulk residues (reflecting detrital continental inputs) of Integrated Ocean Drilling Program (IODP) Leg 302 and core PS2185 from the Lomonosov Ridge (Arctic Ocean). Our records are interpreted to reflect changes in continental erosion and oceanic circulation, driven predominantly by tectonic forcing on million-year timescales in the older (pre-2 Ma) part of the record and by climatic forcing of weathering and erosion of the Eurasian continental margin on thousand-year timescales in the younger (post-2 Ma) part. These data, covering the past ∼15 Ma, show that continental inputs to the central Arctic Ocean have been more closely linked to glacial and hydrological processes occurring on the Eurasian margin than on continental North America and Greenland. The constancy of the detrital input signatures supports the early existence of an Arctic sea ice cover, whereas the major initiation of Northern Hemisphere glaciation at 2.7 Ma appears to have had little impact on the weathering regime of the Eurasian continental margin.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2024-02-07
    Description: Changes in ocean circulation are considered a major driver of centennial‐to‐millennial scale climate variability during the last deglaciation. Using four sediment records from the Nordic Seas, we studied radiocarbon ventilation ages in subsurface and bottom waters to reconstruct past variations in watermass overturning. Planktic foraminiferal ages show significant spatial variability over most of the studied period. These differences suggest that the ventilation of the shallower subsurface waters is strongly influenced by local conditions such as sea‐ice and meltwater input, changes in mixed‐layer depth, and/or variable contributions of water masses with different 14C signatures. Despite covering a significant water depth range, the benthic foraminiferal records show common long‐term patterns, with generally weaker ventilation during stadials and stronger during interstadials. The Greenland Sea record differs the most from the other records, which can be explained by the greater depth and the geographical distance of this site. The benthic records reflect regional shifts in deep convection and suggest that the deep Nordic Seas have been generally bathed by a single, though changing, deep‐water mass analogous to the present‐day Greenland Sea Deep Water. Since significant offsets in ventilation ages are yielded by different taxonomic or ecological groups of benthic foraminifera, the use of uniform material seems a prerequisite to reconstruct bottom water ventilation histories.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...