GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2020-02-18
    Description: All climate models predict a freshening of the North Atlantic at high latitude that may induce an abrupt change of the Atlantic Meridional Overturning Circulation (hereafter AMOC) if it resides in the bistable regime, where both a strong and a weak state coexist. The latter remains uncertain as there is no consensus among observations and ocean reanalyses, where the AMOC is bistable, versus most climate models that reproduce a mono-stable strong AMOC. A series of four hindcast simulations of the global ocean at 1/12° resolution, which is presently unique, are used to diagnose freshwater transport by the AMOC in the South Atlantic, an indicator of AMOC bistability. In all simulations, the AMOC resides in the bistable regime: it exports freshwater southward in the South Atlantic, implying a positive salt advection feedback that would act to amplify a decreasing trend in subarctic deep water formation as projected in climate scenarios.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    AGU (American Geophysical Union) | Wiley
    In:  Geophysical Research Letters, 42 (21). pp. 9379-9386.
    Publication Date: 2020-11-04
    Description: A global ocean model with 1/12∘ horizontal resolution is used to assess the seasonal cycle of surface Eddy Kinetic Energy (EKE). The model reproduces the salient features of the observed mean surface EKE, including amplitude and phase of its seasonal cycle in most parts of the ocean. In all subtropical gyres of the Pacific and Atlantic, EKE peaks in summer down to a depth of ∼350 m, below which the seasonal cycle is weak. Investigation of the possible driving mechanisms reveals the seasonal changes in the thermal interactions with the atmosphere to be the most likely cause of the summer maximum of EKE. The development of the seasonal thermocline in spring and summer is accompanied by stronger mesoscale variations in the horizontal temperature gradients near the surface which corresponds, by thermal wind balance, to an intensification of mesoscale velocity anomalies towards the surface.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-02-08
    Description: Rapid increases in upper 700‐m Indian Ocean heat content (IOHC) since the 2000s have focused attention on its role during the recent global surface warming hiatus. Here, we use ocean model simulations to assess distinct multidecadal IOHC variations since the 1960s and explore the relative contributions from wind stress and buoyancy forcing regionally and with depth. Multidecadal wind forcing counteracted IOHC increases due to buoyancy forcing from the 1960s to the 1990s. Wind and buoyancy forcing contribute positively since the mid‐2000s, accounting for the drastic IOHC change. Distinct timing and structure of upper ocean temperature changes in the eastern and western Indian Ocean are linked to the pathway how multidecadal wind forcing associated with the Interdecadal Pacific Oscillation is transmitted and affects IOHC through local and remote winds. Progressive shoaling of the equatorial thermocline—of importance for low‐frequency variations in Indian Ocean Dipole occurrence—appears to be dominated by multidecadal variations in wind forcing.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-02-19
    Description: Analyses of sea surface height (SSH) records based on satellite altimeter data and hydrographic properties have suggested a considerable weakening of the North Atlantic subpolar gyre during the 1990s. Here we report hindcast simulations with high-resolution ocean circulation models that demonstrate a close correspondence of the SSH changes with the volume transport of the boundary current system in the Labrador Sea. The 1990s-decline, of about 15% of the long-term mean, appears as part of a decadal variability of the gyre transport driven by changes in both heat flux and wind stress associated with the North Atlantic Oscillation (NAO). The changes in the subpolar gyre, as manifested in the deep western boundary current off Labrador, reverberate in the strength of the meridional overturning circulation (MOC) in the subtropical North Atlantic, suggesting the potential of a subpolar transport index as an element of a MOC monitoring system.
    Type: Article , PeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Geophysical Research Letters, 35 (L20602).
    Publication Date: 2017-11-08
    Description: The quantification of inter-ocean leakage from the South Indian to the South Atlantic Ocean is an important measure for the role of the Agulhas system in the global thermohaline circulation. To explore the specific role of mesoscale variability (such as Agulhas rings and Mozambique eddies) in this process a high-resolution model (based on NEMO-ORCA) for the Agulhas region has been set up. It is nested into a global coarse-resolution model. The high-resolution nest captures all salient features of the greater Agulhas region, including the upstream perturbations of the Agulhas Current and Natal Pulses along the African coast. A comparison of the inter-ocean exchange in the high-resolution nest with its coarse resolution counterpart reveals that the latter significantly over-estimates the amount of water flowing into the Atlantic Ocean, demonstrating the need to explicitly simulate the mesoscale features. A sensitivity experiment that excludes the upstream perturbations revealed no difference in the amount of inter-ocean exchange. However, the realistic representation of Agulhas rings and their drift path into the South Atlantic depends on the simulation of those upstream perturbations.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: image
    Format: video
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...