GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2020-02-06
    Description: The 1908 Messina tsunami was the most catastrophic tsunami hitting the coastline of Southern Italy in the younger past. The source of this tsunami, however, is still heavily debated, and both rupture along a fault and a slope failure have been postulated as potential origin of the tsunami. Here we report a newly discovered active Fiumefreddo-Melito di Porto Salvo Fault Zone (F-MPS_FZ), which is located in the outer Messina Strait in a proposed landslide source area of the 1908 Messina tsunami. Tsunami modeling showed that this fault zone would produce devastating tsunamis by assuming slip amounts of ≥5 m. An assumed slip of up to 17 m could even generate a tsunami comparable to the 1908 Messina tsunami, but we do not consider the F-MPS_FZ as a source for the 1908 Messina tsunami because its E-W strike contradicts seismological observations of the 1908 Messina earthquake. Future researches on the F-MPS_FZ, however, may contribute to the tsunami risk assessment in the Messina Strait.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-02-27
    Description: Gas seepage from marine sediments has implications for understanding feedbacks between the global carbon reservoir, seabed ecology and climate change. Although the relationship between hydrates, gas chimneys and seafloor seepage is well established, the nature of fluid sources and plumbing mechanisms controlling fluid escape into the hydrate zone and up to the seafloor remain one of the least understood components of fluid migration systems. In this study we present the analysis of new three-dimensional high-resolution seismic data acquired to investigate fluid migration systems sustaining active seafloor seepage at Omakere Ridge, on the Hikurangi subduction margin, New Zealand. The analysis reveals at high resolution, complex overprinting fault structures (i.e. protothrusts, normal faults from flexural extension, and shallow (〈1 km) arrays of oblique shear structures) implicated in fluid migration within the gas hydrate stability zone in an area of 2x7 km. In addition to fluid migration systems sustaining seafloor seepage on both sides of a central thrust fault, the data show seismic evidence for sub-seafloor gas-rich fluid accumulation associated with proto-thrusts and extensional faults. In these latter systems fluid pressure dissipation through time has been favored, hindering the development of gas chimneys. We discuss the elements of the distinct fluid migration systems and the influence that a complex partitioning of stress may have on the evolution of fluid flow systems in active subduction margins.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Journal of Geophysical Research: Solid Earth, 107 (B2). p. 2034.
    Publication Date: 2018-04-25
    Description: Seismic investigations across the convergent Sunda margin off Indonesia provide a detailed image of the crustal architecture of the Sunda plate boundary. The combined analysis and interpretation of wide-angle and reflection seismic data along two coincident profiles across the subduction zone are complemented by additional lines within the forearc domain, which yield some three-dimensional (3-D) constraints on the velocity-depth structure across the margin. A detailed cross section of the subduction zone is presented, which is confirmed by supplementary gravity modeling. The Sunda convergence zone is a prime example of an accretionary margin, where sediment accretion has led to the formation of a massive accretionary prism, with a total width of 〉110 km between the trench and the forearc basin. It is composed of a frontal wedge which documents ongoing accretion and a fossil part behind the present backstop structure which constitutes the outer high. Moderate seismic velocities derived from wide-angle modeling indicate a sedimentary composition of the outer high. The subducting oceanic slab is traced to a depth of almost 30 km underneath the accretionary prism. The adjacent forearc domain is characterized by a pronounced morphological basin which is underlain by a layer of increased seismic velocities and a shallow upper plate Moho at 16 km depth. We speculate that remnant fragments of oceanic crust might be involved in the formation of this oceanic-type crust found at the leading edge of the upper plate beneath the forearc basin.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Journal of Geophysical Research: Solid Earth, 109 . B02101.
    Publication Date: 2018-04-25
    Description: The 1.5-km-high, obliquely subducting Nazca Ridge and its collision zone with the Peruvian margin have been imaged by wide-angle and reflection seismic profiles, swath bathymetry, and gravity surveying. These data reveal that the crust of the ridge at its northeastern tip is 17 km thick and exhibits seismic velocities and densities similar to layers 2 and 3 of typical oceanic crust. The lowermost layer contributes 10–12 km to the total crustal thickness of the ridge. The sedimentary cover is 300–400 m thick on most parts of the ridge but less than 100 m thick on seamounts and small volcanic ridges. At the collision zone of ridge and margin, the following observations indicate intense tectonic erosion related to the passage of the ridge. The thin sediment layer on the ridge is completely subducted. The lower continental slope is steep, dipping at ∼9°, and the continental wedge has a high taper of 18°. Tentative correlation of model layers with stratigraphy derived from Ocean Drilling Program Leg 112 cores suggests the presence of Eocene shelf deposits near the trench. Continental basement is located 〈15 km landward of the trench. Normal faults on the upper slope and shelf indicate extension. A comparison with the Peruvian and northern Chilean forearc systems, currently not affected by ridge subduction, suggests that the passage of the Nazca Ridge along the continental margin induces a temporarily limited phase of enhanced tectonic erosion superposed on a long-term erosive regime.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-03-10
    Description: The Cocos and Malpelo Volcanic Ridges are blocks of thickened oceanic crust thought to be the result of the interaction between the Galapagos hot spot and the Cocos‐Nazca Spreading Center during the last 20 m.y. In this work we investigate the seismic structure of these two aseismic ridges along three wide‐angle transects acquired during the Panama basin and Galapagos plume—New Investigations of Intraplate magmatism (PAGANINI)‐1999 experiment. A two‐dimensional velocity field with the Moho geometry is obtained using joint refraction/reflection travel time tomography, and the uncertainty and robustness of the results are estimated by performing a Monte Carlo‐type analysis. Our results show that the maximum crustal thickness along these profiles ranges from ∼16.5 km (southern Cocos) to ∼19 km (northern Cocos and Malpelo). Oceanic layer 2 thickness is quite uniform regardless of total crustal thickness variations; crustal thickening is mainly accommodated by layer 3. These observations are shown to be consistent with gravity data. The variation of layer 3 velocities is similar along all profiles, being lower where crust is thicker. This leads to an overall anticorrelation between crustal thickness and bulk lower crustal velocity. Since this anticorrelation is contrary to crustal thickening resulting from passive upwelling of abnormally hot mantle, it is necessary to consider active upwelling components and/or some compositional heterogeneities in the mantle source. The NW limit of the Malpelo Ridge shows a dramatic crustal thinning and displays high lower crustal velocities and a poorly defined crust‐mantle boundary, suggesting that differential motion along the Coiba transform fault probably separated Regina and Malpelo Ridges.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-02-07
    Description: Focused gas migration through the gas hydrate stability zone in vertical gas conduits is a global phenomenon. The process can lead to concentrated gas hydrate formation and seafloor gas seepage, which influences seafloor biodiversity and ocean biogeochemistry. However, much is unknown about how gas and gas hydrate co-exist within and around gas conduits. We present seismic imaging of the gas hydrate system beneath a four-way closure anticlinal ridge at New Zealand's southern Hikurangi subduction margin. Gas has accumulated beneath the base of gas hydrate stability to a thickness of up to ∼240 m, which has ultimately led to hydraulic fracturing and propagation of a vertical gas conduit to the seafloor. Despite the existence of an array of normal faults beneath the ridge, these structures are not exploited as long-range gas flow conduits. Directly beneath the conduit, and extending upward from the regional base of gas hydrate stability, is a broad zone characterized by both negative- and positive-polarity reflections. We interpret this zone as a volume of sediment hosting both gas hydrate and free gas, that developed due to partial gas trapping beneath a mass transport deposit. Similar highly reflective zones have been identified at the bases of other gas conduits, but they are not intrinsic to all gas conduits through gas hydrate systems. We suggest that pronounced intervening sealing units within the gas hydrate stability zone determine whether or not they form.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...