GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • AGU (American Geophysical Union)  (2)
  • 2010-2014  (2)
  • 1
    facet.materialart.
    Unbekannt
    AGU (American Geophysical Union)
    In:  Journal of Geophysical Research: Atmospheres, 115 (D12). D12113.
    Publikationsdatum: 2018-02-06
    Beschreibung: The multidecadal variability of air-sea CO(2)fluxes in the North Atlantic under preindustrial atmospheric CO(2) conditions is simulated, using a coupled biogeochemical/circulation model driven by long-term surface forcing reconstructed from the leading modes of sea level pressure observations from 1850 to 2000. Heat fluxes are of great importance for the multidecadal CO(2) fluctuations, about equal in magnitude to wind stress, in contrast to their less prominent role for CO(2) flux variability on interannual timescales. Another difference, compared to higher frequencies, is the dominance of the North Atlantic Oscillation in driving the variability of the air-sea CO(2) fluxes. Two spatially distinct regimes lead to large anomalies in the CO(2) fluxes but compensate to a large degree. The first regime is advective and has its clear signature southeast of Greenland while the second one, in the vicinity of the Labrador Sea and off Newfoundland, is convective. In both regimes, the multidecadal CO(2) fluctuations are driven mainly by variations in temperature, salinity, and DIC content at the sea surface while the role of the biological pump is of minor importance in this particular model. The magnitude of the simulated multidecadal CO(2) uptake changes is on the order of 0.02 Pg C/yr and amounts to 10-15% of the estimated annual anthropogenic CO(2) uptake of the North Atlantic.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    facet.materialart.
    Unbekannt
    AGU (American Geophysical Union)
    In:  Journal of Geophysical Research: Oceans, 115 (C8). C08026.
    Publikationsdatum: 2018-01-18
    Beschreibung: Using a global ocean model with regionally focused high resolution (1/10°) in the East China Sea (ECS), we studied the oceanic heat budget in the ECS. The modeled sea surface height variability and eddy kinetic energy are consistent with those derived from satellite altimetry. Significant levels of eddy kinetic energy are found east of the Ryukyu Islands and east of Taiwan, where the short-term variability is spawned by active mesoscale eddies coalescing with the circulation. Furthermore, the simulated vertical cross-stream structure of the Kuroshio (along the Pollution Nagasaki line) and the volume transport through each channel in the ECS are in good agreement with the observational estimates. The time-averaged temperature fluxes across the Taiwan Strait (TWS), Tsushima Strait (TSS), and the 200 m isobath between Taiwan and Japan are 0.20 PW, 0.21 PW, and 0.05 PW, respectively. The residual heat flux of 0.04 PW into the ECS is balanced by the surface heat loss. The eddy temperature flux across the 200 m isobath is 0.005 PW, which accounts for 11.2% of the total temperature flux. The Kuroshio onshore temperature flux has two major sources: the Kuroshio intrusion northeast of Taiwan and southwest of Kyushu. The Ekman temperature flux induced by the wind stress in the ECS shows the same seasonal cycle and amplitude as the onshore temperature flux, with a maximum in autumn and a minimum in summer. We conclude that the Ekman temperature flux dominates the seasonal cycle of Kuroshio onshore flux.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...