GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Springer  (2)
  • 1975-1979  (2)
Document type
Publisher
Years
Year
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Planta 136 (1977), S. 97-102 
    ISSN: 1432-2048
    Keywords: Acid growth ; Auxin ; Ethylene ; Fusicoccin ; Growth inhibition ; Lens ; Root growth
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Both acid pH (4.0) and fusicoccin (FC) strongly stimulate root elongation in intact lentil (Lens culinaris Med.) seedlings. FC-induced elongation is apparently mediated by FC-enhanced H+ secretion since the toxin induces massive secretion of H+ in these roots after a latent period of less than 5 min. Auxin (indole-3-acetic acid) strongly inhibits elongation in control roots as well as acid-induced and FC-induced root elongation. Treatment of apical root segments with auxin causes only a slight apparent uptake of H+ and has no inhibitory effect on FC-induced H+ secretion, whether the hormone is given before or after the toxin. Auxin induces ethylene production in excised roots of lentil but the latent period is at least 30 min while inhibition of root elongation by IAA is maximal within 30 min. It is concluded that the inhibitory action of auxin on acid-and fusicoccin-induced root elongation is a direct effect, independent of auxin-induced ethylene production or auxin-mediated modification of cell-wall pH.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-2048
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Using recently developed techniques, we have investigated the binding of 45Ca2+ to membrane preparations from corn (Zea mays L) and oat (Avena sativa L) coleoptile tissue. Scatchard plot analysis reveals at least two Ca2+-binding sites in each tissue, a high affinity binding site (K m=7.7×10-7 M, n=6.9×10-10 mol·0.5 g f.w.-1 in corn, K m=4.93×10-6 M, n=2.29×10-9 mol·0.5 g f.w.-1 in Avena) and a low affinity binding site (K m=9.01×10-5 M, n=5.4×10-8 mol·0.5 g f.w.-1 in corn; K m=1.03×10-4 M, n=3.40×10-8 mol·0.5 g f.w.-1 in Avena). There is also some evidence of a third, lower affinity binding site in each tissue, especially corn. More detailed studies with corn coleoptile homogenates show that they contain a potent dialyzable inhibitor of Ca2+ binding. Monovalent cations were observed to be ineffective as inhibitors of Ca2+ binding in corn. However, of six divalent cations tested, all were capable of strong inhibition of Ca2+-binding and there appeared to be a relationship between size of the atomic radius of the ion and potency as an inhibitor of calcium binding.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...