GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Keywords: Forschungsbericht
    Type of Medium: Book
    Pages: 43 Seiten
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Keywords: Fahrtbericht ; gas hydrates ; Forschungsbericht ; Peru ; Tiefseebecken ; Meeressediment ; Gashydrate ; Prospektion ; Ausrüstung ; Peru ; Sonne ; Meereskunde ; Expedition ; Valparaíso ; Balboa ; Sonne ; Gashydrate ; Messung ; Test ; Sonne ; Gashydrate ; Peru ; Tiefseebecken ; Meeressediment ; Gashydrate ; Prospektion ; Ausrüstung ; Peru ; Sonne ; Meereskunde ; Expedition
    Type of Medium: Book
    Pages: 114 S. , Ill., graph. Darst.
    Series Statement: GEOMAR Report 103
    Language: English
    Note: Literaturverz. S. 100 - 102 , Zsfassung in dt. Sprache
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Keywords: Fahrtbericht ; Forschungsbericht ; Sonne ; Peru ; Kontinentalrand
    Description / Table of Contents: Das Ziel der Forschungsfahrt SO 146 GEOPECO (Geophysical experiments at the Peruvian Continental margin - investigations of tectonics, mechanics, and fluid transport) war es, einen multidisziplinären geophysikalischen und geologischen Datensatz im Seegebiet vor Peru zwischen 15°S und 5°S aufzunehmen, um zum einen die Struktur und Geodynamik des peruanischen Abschnittes der andinen Subduktionszone sowie Gashydratsysteme in Bereichen mit unterschiedlicher tektonischer Entwicklung quantifizierend zu untersuchen. (MOD)
    Type of Medium: Book
    Pages: VI, 490 S , Ill., graph. Darst., Kt
    Series Statement: GEOMAR-Report 96
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Keywords: Forschungsbericht
    Type of Medium: Online Resource
    Pages: Online-Ressource (8 p. = 40,9 KB)
    Language: German , English
    Note: Contract BMBF 03G0162A/B. - Joint project no. 01018235. - Text dt., mit engl. Zsfass , Differences between the printed and electronic version of the document are possible , Also available as printed version , Systemvoraussetzungen: Acrobat reader.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Geophysical journal international, Oxford : Oxford Univ. Press, 1958, 159(2004), 2, Seite 749-764, 1365-246X
    In: volume:159
    In: year:2004
    In: number:2
    In: pages:749-764
    Description / Table of Contents: Active seismic investigations along the Pacific margin off Peru were carried out using ocean bottom hydrophones and seismometers. The structure and the P-wave velocities of the obliquely subducting oceanic Nazca Plate and overriding South American Plate from 8°S to 15°S were determined by modelling the wide-angle seismic data combined with the analysis of reflection seismic data. Three detailed cross-sections of the subduction zone of the Peruvian margin and one strike-line across the Lima Basin are presented here. The oceanic crust of the Nazca Plate, with a thin pelagic sediment cover, ranging from 0-200 m, has an average thickness of 6.4 km. At 8°S it thins to 4 km in the area of Trujillo Trough, a graben-like structure. Across the margin, the plate boundary can be traced to 25 km depth. As inferred from the velocity models, a frontal prism exists adjacent to the trench axis and is associated with the steep lower slope. Terrigeneous sediments are proposed to be transported downslope due to gravitational forces and comprise the frontal prism, characterized by low seismic P-wave velocities. The lower slope material accretes against a backstop structure, which is defined by higher seismic P-wave velocities, 3.5-6.0 km s-1. The large variations in surface slope along one transect may reflect basal removal of upper plate material, thus steepening the slope surface. Subduction processes along the Peruvian margin are dominated by tectonic erosion indicated by the large margin taper, the shape and bending of the subducting slab, laterally varying slope angles and the material properties of the overriding continental plate. The erosional mechanisms, frontal and basal erosion, result in the steepening of the slope and consequent slope failure.
    Type of Medium: Online Resource
    Pages: graph. Darst
    ISSN: 1365-246X
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Keywords: Forschungsbericht
    Description / Table of Contents: Seismic, gashydrate, streamer, OBS, deep tow
    Type of Medium: Online Resource
    Pages: Getr. Zählung [ca. 50 S.] , Ill., graph. Darst., Kt. , Digitalisierungsvorlage: Primärausg.
    Edition: Online-Ausg. Berlin SRZ 2008 Online-Ressource (71 S., 10,0 MB)
    Language: German
    Note: Förderkennzeichen BMBF 03 G 0564 A. - Verbund-Nr. 01018235. - Literaturangaben , TIB Hannover , Systemvoraussetzungen: Acrobat reader.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    PANGAEA
    In:  IFM-GEOMAR Leibniz-Institute of Marine Sciences, Kiel University
    Publication Date: 2024-02-02
    Keywords: DERIDGE; Event label; File format; File name; File size; From Mantle to Ocean: Energy-, Material- and Life-cycles at Spreading Axes; LATITUDE; LONGITUDE; M62/4; M62/4-P09; M62/4-P10; M62/4-P100; M62/4-P111-121; M62/4-P200; M62/4-P228-253; M62/4-P54; M62/4-P55; Meteor (1986); Mid-Atlantic Ridge at 4-11°S; S09; S10; S100; S111-121; S200; S228-253; S54; S55; SEIS; Seismic; Uniform resource locator/link to image; Uniform resource locator/link to sgy data file
    Type: Dataset
    Format: text/tab-separated-values, 4546 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2018-07-16
    Description: The convergent margin of the central Sunda Arc in Indonesia was the target of a reflection and refraction seismic survey conducted in 1998 and 1999. Along two seismic lines across the subduction complex off southern Sumatra and off Sunda Strait, coincident multichannel and wide-angle data were collected, complemented by two refraction strike-lines in the forearc basin off Sumatra. The combined analysis of the acquired data allows us to present a detailed model of the subduction zone where initiation of strain partitioning occurs due to the onset of oblique subduction. The dip of the subducted plate is well defined along both dip-lines and a lateral increase from 5° to 7° from beneath the outer high off Sumatra to Sunda Strait is supported by complementary gravity modelling. The downgoing slab is traced to a depth of more than 30km. On both reflection dip-lines, a clearly developed backstop structure underlying a trench slope break defines the landward termination of the active accretionary prism and separates it from the outer high. Active subduction accretion is supported by laterally increasing velocities between the deformation front and the active backstop structure. Seismic velocities of the outer high are moderate along both lines (〈5.8kms−1 at 20km depth), suggesting a sedimentary composition. Reduced reflectivity beneath a rugged top basement traced along the outer high of both dip-lines supports a high degree of deformation and material compaction. Several kilometres of sediment has accumulated in the forearc domain, although a distinct morphological basin is only recognized off southern Sumatra and is not developed off Sunda Strait. The bathymetric elevation of the Java shelf that is encountered in the southern Sunda Strait corresponds to increased velocities of a basement high there and is connected to extensional structures of the Sunda Strait transtensional basin. Differences observed in the morphology of the forearc domain are also reflected in the lower crustal structure. Off southern Sumatra, the velocity–depth model clearly indicates a continental-type crust underlying the forearc basin, whereas lower velocities are found beneath the Sunda Strait forearc domain. Off Sumatra, some 3-D constraint on the upper plate structure is gained from the refraction strike-lines, which in addition is supported by synthetic data modelling.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2016-11-15
    Description: Bottom-simulating reflections (BSRs) are probably the most commonly used indicators for gas hydrates in marine sediments. It is now widely accepted that BSRs are primarily caused by free gas beneath gas-hydrate-bearing sediments. However, our insight into BSR formation to date is mostly limited to theoretical studies. Two endmember processes have been suggested to supply free gas for BSR formation: (i) dissociation of gas hydrates and (ii) migration of methane from below. During a recent campaign of the German Research Vessel Sonne off the shore of Peru, we detected BSRs at locations undergoing both tectonic subsidence and non-sedimentation or seafloor erosion. Tectonic subsidence (and additionally perhaps seafloor erosion) causes the base of gas hydrate stability to migrate downward with respect to gas-hydrate-bearing sediments. This process rules out dissociation of gas hydrates as a source of free gas for BSRs at these locations. Instead, free gas at BSRs is predicted to be absorbed into the gas hydrate stability zone. BSRs appear to be confined to locations where the subsurface structure suggests focusing of fluid flow. We investigated the seafloor at one of these locations with a TV sled and observed fields of rounded boulders and slab-like rocks, which we interpreted as authigenic carbonates. Authigenic carbonates are precipitations typically found at cold vents with methane expulsion. We retrieved a small carbonate-cemented sediment sample from the seafloor above a BSR about 20 km away. This supported our interpretation that the observed slabs and boulders were carbonates. All these observations suggest that BSRs in Lima Basin are maintained predominantly by gas that is supplied from below, demonstrating that this endmember process for BSR formation exists in nature. Results from Ocean Drilling Program Leg 112 showed that methane for gas hydrate formation on the Peru lower slope and the methane in hydrocarbon gases on the upper slope is mostly of biogenic origin. The δ13C composition of the recovered carbonate cement was consistent with biologic methane production below the seafloor (although possibly above the BSR). We speculate that the gas for BSR formation in Lima Basin also is mainly biogenic methane. This would suggest the biologic productivity beneath the gas hydrate zone in Lima Basin to be relatively high in order to supply enough methane to maintain BSRs.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2018-01-31
    Description: A 550-km-long transect across the Ninetyeast Ridge, a major Indian ocean hotspot trail, provided seismic refraction and wide-angle reflection data recorded on 60 ocean bottom instruments. About 24 000 crustal and 15 000 upper mantle arrivals have been picked and used to derive an image of the hotspot track. Two approaches have been chosen: (i) a first-arrival tomographic inversion yielding crustal properties; and (ii) forward modelling of mantle phases revealing the structure at the crust–mantle boundary region and of the uppermost mantle. Away from the volcanic edifice, seismic recordings show the typical phases from oceanic crust, that is, two crustal refraction branches (Pg), a wide-angle reflection from the crust–mantle boundary (PmP) and a wave group turning within the upper mantle (Pn). Approaching the edifice, three additional phases have been detected. We interpret these arrivals as a wide-angle reflection from the base of material trapped under the pre-hotspot crust (Pm2P) and as a wide-angle reflection (PnP) and its associated refraction branch (PN) from a layered upper mantle. The resulting models indicate normal oceanic crust to the west and east of the edifice. Crustal thickness averages 6.5–7 km. Wide-angle reflections from both the pre-hotspot and the post-hotspot crust–mantle boundary suggest that the crust under the ridge has been bent downwards by loading the lithosphere, and hotspot volcanism has underplated the pre-existing crust with material characterized by seismic velocities intermediate between those of mafic lower crustal and ultramafic upper mantle rocks (7.5–7.6 km s−1). In total, the crust is up to ≈ 24 km thick. The ratio between the volume of subcrustal plutonism forming the underplate and extrusive and intrusive volcanism forming the edifice is about 0.7. An important observation is that underplating continued to the east under the Wharton Basin. During the shield-building phase, however, Ninetyeast Ridge was located adjacent to the Broken Ridge and was subsequently pulled apart along a transform fault boundary. Therefore, underplating eastwards of the fracture zone separating the edifice from the Wharton Basin suggests that prolonged crustal growth by subcrustal plutonism occurred over millions of years after the major shield-building stage. This fact, however, requires mantle flow along the fossil hotspot trail. The occurrence of PnP and PN arrivals is probably associated with a layered and anisotropic upper mantle due to the preferential alignment of olivine crystals and may have formed by rising plume material which spread away under the base of the lithosphere.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...