GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • AMS (American Meteorological Society)  (7)
  • 2000-2004  (7)
Publikationsart
Verlag/Herausgeber
Erscheinungszeitraum
Jahr
  • 1
    facet.materialart.
    Unbekannt
    AMS (American Meteorological Society)
    In:  Journal of Physical Oceanography, 33 (12). pp. 2719-2737.
    Publikationsdatum: 2018-04-10
    Beschreibung: A new type of ocean general circulation model with simplified physics is described and tested for various simple wind-driven circulation problems. The model consists of the vorticity balance of the depth-averaged flow and a hierarchy of equations for “vertical moments” of density and baroclinic velocity. The first vertical density moment is the (vertically integrated) potential energy, which is used to describe the predominant link between the barotropic and the baroclinic oceanic flow in the presence of sloping topography. Tendency equations for the vertical moments of density and baroclinic velocity and an appropriate truncation of the coupled hierarchy of moments are derived that, together with the barotropic vorticity balance, yield a closed set of equations describing the barotropic–baroclinic interaction (BARBI) model of the oceanic circulation. Idealized companion experiments with a numerical implementation of the BARBI model and a primitive equation model indicate that wave propagation properties and baroclinic adjustments are correctly represented in BARBI in midlatitudes as well as in equatorial latitudes. Furthermore, a set of experiments with a realistic application to the Atlantic/Southern Ocean system reproduces important aspects that have been previously reported by studies of gyre circulations and circumpolar currents using full primitive equation models
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    facet.materialart.
    Unbekannt
    AMS (American Meteorological Society)
    In:  Journal of Physical Oceanography, 32 (12). pp. 3346-3363.
    Publikationsdatum: 2020-08-04
    Beschreibung: Experiments with a suite of North Atlantic general circulation models are used to examine the sources of eddy kinetic energy (EKE) in the Labrador Sea. A high-resolution model version (112°) quantitatively reproduces the observed signature. A particular feature of the EKE in the Labrador Sea is its pronounced seasonal cycle, with a maximum intensity in early winter, as already found in earlier studies based on altimeter data. In contrast to a previously advanced hypothesis, the seasonally varying eddy field is not related to a forcing by high-frequency wind variations but can be explained by a seasonally modulated instability of the West Greenland Current (WGC). The main source of EKE in the Labrador Sea is an energy transfer due to Reynolds interaction work (barotropic instability) in a confined region near Cape Desolation where the WGC adjusts to a change in the topographic slope: Geostrophic contours tend to converge upstream of Cape Desolation, such that the topographically guided WGC narrows as well and becomes barotropically unstable. The eddies spawned from the WGC instability area, dominating the EKE in the interior Labrador Sea, are predominantly anticyclonic with warm and saline cores in the upper kilometer of the water column, while the few cyclones originating as well from the instability area show a more depth-independent structure. Companion experiments with a ⅓° model exhibit the strength of the WGC, influenced by either changes in the wind stress or heat flux forcing, as a leading factor determining seasonal to interannual changes of EKE in the Labrador Sea
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    facet.materialart.
    Unbekannt
    AMS (American Meteorological Society)
    In:  Journal of Physical Oceanography, 32 (3). pp. 891-902.
    Publikationsdatum: 2020-08-04
    Beschreibung: The so-called equatorial stacked jets are analyzed with ship-board observations and moored time series from the Atlantic Ocean. The features are identified and isolated by comparing vertical wavenumber spectra at the equator with those a few degrees from the equator. Mode-filtering gives clear views of the jets in meridional sections, the typical extent being ±1° in latitude. The vertical structure can be well described (explaining 82% of the variance) by N−1-stretched cosines, with a Gaussian amplitude tapering in the vertical. The stretched wavelengths are somewhat variable. Fitting jets of a fixed (stretched) wavelength to four moored sensors in the depth range 1300–1900 m, allows one to track the vertical phase of the jets with an rms error of 30°–45°. The resulting fit from a 20-month moored time series shows long periods of unchanging jet conditions and intermittent times of high variability. There is no significant vertical propagation on these timescales nor a seasonal reversal. Using a composite from many different experiments, interannual variability is visible, however. A possible mechanism for the stacked jets is inertial instability, resulting from background meridional shears at the equator. A condition is that the Ertel potential vorticity becomes zero somewhere, due to meridional asymmetries in the zonal flows. The ship-board observations show that this may be approximately fulfilled by the instantaneous zonal low-mode flows at various depths, resulting from an excess of zonal momentum south of the equator most of the time. Inertial instability should act to redistribute this zonal momentum, and our mooring data show indeed persistent northward momentum flux, but not at the depth levels expected. The momentum transport might suggest that the jets can also flux or mix other properties across the equator.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Publikationsdatum: 2020-08-04
    Beschreibung: This study focuses on an important aspect of air–sea interaction in models, namely, large-scale, spurious heat fluxes due to false pathways of the Gulf Stream and North Atlantic Current (NAC) in the “storm formation region” south and east of Newfoundland. Although high-resolution eddy-resolving models show some improvement in this respect, results are sensitive to poorly understood, subgrid-scale processes for which there is currently no complete, physically based parameterization. A simple method to correct an ocean general circulation model (OGCM), acting as a practical substitute for a physically based parameterization, is explored: the recently proposed “semiprognostic method,” a technique for adiabatically adjusting flow properties of a hydrostatic OGCM. The authors show that application of the method to an eddy-permitting model of the North Atlantic Ocean yields more realistic flow patterns and watermass characteristics in the Gulf Stream and NAC regions; in particular, spurious surface heat fluxes are reduced. Four simple modifications to the method are proposed, and their benefits are demonstrated. The modifications successfully account for three drawbacks of the original method: reduced geostrophic wave speeds, damped mesoscale eddy activity, and spurious interaction with topography. It is argued that use of a corrected (eddy permitting) OGCM in a coupled modeling system for simulating present climate (as now becomes possible because of increasing computer power) should lead to a more realistic simulation in regions of strong air–sea interaction as compared with that obtained with an uncorrected model. The method is also well suited for the simulation of the uptake and transport of passive tracers, such as anthropogenic carbon dioxide or components of ecosystem models.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    facet.materialart.
    Unbekannt
    AMS (American Meteorological Society)
    In:  Journal of Climate, 14 (5). pp. 676-691.
    Publikationsdatum: 2019-09-23
    Beschreibung: In contrast to the atmosphere, knowledge about interdecadal variability of the North Atlantic circulation is relatively restricted. It is the objective of this study to contribute to understanding how the North Atlantic circulation responds to a forcing by the North Atlantic oscillation (NAO) on interdecadal timescales. For this purpose, the authors analyze observed atmospheric and sea surface temperature (SST) data along with the response of an ocean general circulation model to a realistic monthly surface flux forcing that is solely associated with the NAO for the period 1865–1997. In agreement with previous studies, it is shown that the relationship between the local forcing by the NAO and observed SST anomalies on interdecadal timescales points toward the importance of oceanic dynamics in generating SST anomalies. A comparison between observed and modeled SST anomalies reveals that the model results can be used to assess interdecadal variability of the North Atlantic circulation. The observed/modeled developments of interdecadal SST anomalies during the periods 1915–39 and 1960–84 against the local damping influence from the NAO can be traced back to the lagged response (10–20 yr) of the North Atlantic thermohaline circulation and the subpolar gyre strength to interdecadal variability of the NAO. Additional sensitivity experiments suggest that primarily interdecadal variability in the surface net heat flux forcing associated with the NAO governs interdecadal changes of the North Atlantic circulation
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    facet.materialart.
    Unbekannt
    AMS (American Meteorological Society)
    In:  Journal of Climate, - (16). pp. 443-460.
    Publikationsdatum: 2020-08-04
    Beschreibung: A simple stochastic atmosphere model is coupled to a realistic model of the North Atlantic Ocean. A north–south SST dipole, with its zero line centered along the subpolar front, influences the atmosphere model, which in turn forces the ocean model by surface fluxes related to the North Atlantic Oscillation. The coupled system exhibits a damped decadal oscillation associated with the adjustment through the ocean model to the changing surface forcing. The oscillation consists of a fast wind-driven, positive feedback of the ocean and a delayed negative feedback orchestrated by overturning circulation anomalies. The positive feedback turns out to be necessary to distinguish the coupled oscillation from that in a model without any influence from the ocean to the atmosphere. Using a novel diagnosing technique, it is possible to rule out the importance of baroclinic wave processes for determining the period of the oscillation, and to show the important role played by anomalous geostrophic advection in sustaining the oscillation.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    facet.materialart.
    Unbekannt
    AMS (American Meteorological Society)
    Publikationsdatum: 2022-03-10
    Beschreibung: A model of the Atlantic Ocean was forced with decadal-scale time series of surface fluxes taken from the National Centers for Environmental Prediction–National Center for Atmospheric Research reanalysis. The bulk of the variability of the oceanic circulation is found to be related to the North Atlantic oscillation (NAO). Both realistic experiments and idealized sensitivity studies with the model show a fast (intraseasonal timescale) barotropic response and a delayed (timescale about 6–8 yr) baroclinic oceanic response to the NAO. The fast response to a high NAO constitutes a barotropic anticyclonic circulation anomaly near the subpolar front with a substantial decrease of the northward heat transport and an increase of northward heat transport in the subtropics due to changes in Ekman transport. The delayed response is an increase in subpolar heat transport due to enhanced meridional overturning and due to a spinup of the subpolar gyre. The corresponding subpolar and subtropical heat content changes could in principle act as an immediate positive feedback and a delayed negative feedback to the NAO.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...