GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2005-2009  (2)
Document type
Years
Year
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © Elsevier B.V., 2007. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Deep Sea Research Part II: Topical Studies in Oceanography 54 (2007): 1999-2019, doi:10.1016/j.dsr2.2007.06.019.
    Description: The annual phytoplankton bloom occurring north of the Crozet Plateau provides a rare opportunity to examine the hypothesis that natural iron fertilisation can alleviate HNLC conditions normally associated with the Southern Ocean. Therefore, during CROZEX, a large multidisciplinary study performed between November 2004 and January 2005, measurements of total dissolved iron (DFe, ≤ 0.2 μm) were made on seawater from around the islands and atmospheric iron deposition estimated from rain and aerosol samples. DFe concentrations were determined by flow injection analysis with N,N-dimethyl- pphenylenediamine dihydrochloride (DPD) catalytic spectrophotometric detection. DFe concentrations varied between 0.086 nM and 2.48 nM, with low values in surface waters. Enrichment of dissolved iron (〉1 nM) at close proximity to the islands suggests that the plateau and the associated sediments are a source of iron. Waters further north also appear to be affected by this input of coastal and shelf origin, although dissolved iron concentrations decrease as a function of distance to the north of the plateau with a gradient of ~0.07 nM.km-1 at the time of sampling. Using lateral and vertical diffusion coefficients derived from Ra isotope profiles and also estimates of atmospheric inputs, it was then possible to estimate a DFe concentration of ~0.55 nM to the north of the islands prior to the bloom event, which is sufficient to initiate the bloom, the lateral island source being the largest component. A similar situation is observed for other Sub-Antarctic Islands such as Kerguelen, South Georgia, that supply dissolved iron to their surrounding waters, thus, enhancing chlorophyll concentrations.
    Description: These cruises were the two first of the Crozex project, which was a contribution to a British BICEP (Biophysical Interactions and Control of Export Production)-NERC program. This work was also supported by NERC Grant NE/B502844/1 and a NERC PhD studentship for M.F.
    Keywords: Dissolved iron ; Crozet Islands ; Crozet Islands ; HNLC
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-26
    Description: Author Posting. © Elsevier B.V., 2007. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Deep Sea Research Part II: Topical Studies in Oceanography 54 (2007): 1989-1998, doi:10.1016/j.dsr2.2007.06.003.
    Description: Elevated levels of productivity in the wake of Southern Ocean island systems are common despite the fact that they are encircled by high nutrient low chlorophyll (HNLC) waters. In the Crozet Plateau region, it has been hypothesized that iron from island runoff or sediments of the plateau could be fueling the austral summer phytoplankton bloom. Here, we use radium isotopes to quantify the rates of surface ocean iron supply fueling the bloom in the Crozet Plateau region. A 1-D eddy-diffusion-mixing model applied to a 228Ra profile (t1/2 = 5.75 yr) at a station north of the islands suggested fast vertical mixing in the upper 300 m (Kz = 11-100 cm2 s- 1) with slower mixing between 300 and 1000 m (Kz = 1.5 cm2 s-1). This estimate is discussed in the context of Kz derived from the CTD/LADCP data. In combination with the dissolved Fe profile at this location, we estimated a vertical flux of between 5.6 and 31 nmol Fe m-2 d-1. The cross-plateau gradients in the short-lived radium isotopes, 224Ra (t1/2 = 3.66 d) and 223Ra (t1/2 = 11.4 d), yielded horizontal eddy diffusivities (Kh) of 39 m2 s-1 and 6.6 m2 s-1, respectively. If we assume that the islands (surface runoff) alone were supplying dissolved Fe to the bloom region, then the flux estimates range from 2.3 to 14 nmol Fe m-2 d-1. If the plateau sediments are considered a source of Fe, and conveyed to the bloom region through deep winter mixing combined with horizontal transport, then this flux may be as high as 64 to 390 nmol Fe m-2 d-1. Combined, these Fe sources are sufficient to initiate and maintain the annual phytoplankton bloom.
    Description: This work was funded by grants from the Natural Environment Research Council [NE/B502844/1] and the National Science Foundation (ANT-0443869 to M.A.C).
    Keywords: Radium isotopes ; Iron ; Productivity ; Ocean mixing ; Southern Ocean
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...