GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2013-01-01
    Description: Previous genetic studies of extant planktonic foraminifera have provided evidence that the traditional, strictly morphological definition of species in these organisms underestimates their biodiversity. Here, we report the first case where this pattern is reversed. The modern (sub)tropical species plexus Globigerinoides sacculifer is characterized by large morphological variability, which has led to the proliferation of taxonomic names attributed to morphological end-members within the plexus. In order to clarify the taxonomic status of its morphotypes and to investigate the genetic connectivity among its currently partly disjunct (sub)tropical populations, we carried out a global survey of two ribosomal RNA regions (SSU and ITS-1) in all recent morphotypes of the plexus collected throughout (sub)tropical surface waters of the global ocean. Unexpectedly, we find an extremely reduced genetic variation within the plexus and no correlation between genetic and morphological divergence, suggesting taxonomical overinterpretation. The genetic homogeneity within the morphospecies is unexpected, considering its partly disjunct range in the (sub)tropical Atlantic and Indo-Pacific and its old age (early Miocene). A sequence variant in the rapidly evolving ITS-1 region indicates the existence of an exclusively Atlantic haplotype, which suggests an episode of relatively recent (last glacial) isolation, followed by subsequent resumption of unidirectional gene flow from the Indo-Pacific into the Atlantic. This is the first example in planktonic foraminifera where the morphological variability in a morphospecies exceeds its rDNA genetic variability. Such evidence for inconsistent scaling of morphological and genetic diversity in planktonic foraminifera could complicate the interpretation of evolutionary patterns in their fossil record.
    Print ISSN: 0094-8373
    Electronic ISSN: 0094-8373
    Topics: Geosciences
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Beaufort, Luc; Probert, Ian; de Garidel-Thoron, Thibault; Bendif, E M; Ruiz-Pino, Diana; Metzi, N; Goyet, Catherine; Buchet, Noëlle; Coupel, Pierre; Grelaud, Michaël; Rost, Björn; Rickaby, Rosalind E M; De Vargas, Colomban (2011): Sensitivity of coccolithophores to carbonate chemistry and ocean acidification. Nature, 476, 80-83, https://doi.org/10.1038/nature10295
    Publication Date: 2024-03-15
    Description: About one-third of the carbon dioxide (CO2) released into the atmosphere as a result of human activity has been absorbed by the oceans, where it partitions into the constituent ions of carbonic acid. This leads to ocean acidification, one of the major threats to marine ecosystems and particularly to calcifying organisms such as corals, foraminifera and coccolithophores. Coccolithophores are abundant phytoplankton that are responsible for a large part of modern oceanic carbonate production. Culture experiments investigating the physiological response of coccolithophore calcification to increased CO2 have yielded contradictory results between and even within species. Here we quantified the calcite mass of dominant coccolithophores in the present ocean and over the past forty thousand years, and found a marked pattern of decreasing calcification with increasing partial pressure of CO2 and concomitant decreasing concentrations of CO3. Our analyses revealed that differentially calcified species and morphotypes are distributed in the ocean according to carbonate chemistry. A substantial impact on the marine carbon cycle might be expected upon extrapolation of this correlation to predicted ocean acidification in the future. However, our discovery of a heavily calcified Emiliania huxleyi morphotype in modern waters with low pH highlights the complexity of assemblage-level responses to environmental forcing factors.
    Keywords: Age, dated; Alkalinity, total; Antarctic; Aragonite saturation state; Bicarbonate ion; Calcite saturation state; Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbonate ion; Carbonate system computation flag; Carbon dioxide; CTD, Sea-Bird SBE 911plus; Emiliania huxleyi; Emiliania huxleyi, diameter; Emiliania huxleyi, weight; Emiliania huxleyi, weight, standard error; EPOCA; Estimated by measuring brightness in cross-polarized light (birefringence); EUR-OCEANS; European network of excellence for Ocean Ecosystems Analysis; European Project on Ocean Acidification; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Indian Ocean; LATITUDE; LONGITUDE; Measured and/or detected by SYRACO software; North Atlantic; North Pacific; OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); pH; Phytoplankton; Replicates; Salinity; Sample ID; South Atlantic; South Pacific; Temperature, water; Titration potentiometric
    Type: Dataset
    Format: text/tab-separated-values, 16400 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...