GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © The Author(s), 2012. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Climate Dynamics 41 (2013): 1291-1306, doi:10.1007/s00382-012-1483-0.
    Description: High-resolution sedimentary paleoclimate proxy records offer the potential to expand the detection and analysis of decadal- to centennial-scale climate variability during recent millennia, particularly within regions where traditional high-resolution proxies may be short, sparse, or absent. However, time uncertainty in these records potentially limits a straightforward objective identification of broad-scale patterns of climate variability. Here, we describe a procedure for identifying common patterns of spatiotemporal variability from time uncertain sedimentary records. This approach, which we term Monte Carlo Empirical Orthogonal Function (MCEOF) analysis, uses iterative age modeling and eigendecomposition of proxy time series to isolate common regional patterns and estimate uncertainties. As a test case, we apply this procedure to a diverse set of time-uncertain lacustrine proxy records from East Africa. We also perform a pseudoproxy experiment using climate model output to examine the ability of the method to extract shared anomalies given known signals. We discuss the advantages and disadvantages of our approach, including possible extensions of the technique.
    Description: JET acknowledges the UCAR Climate and Global Change Postdoctoral Fellowship for support.
    Description: 2014-08-26
    Keywords: Paleoclimate ; Africa ; Empirical orthogonal functions ; Monte Carlo ; Uncertainty ; Geochronology
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2010. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Paleoceanography 25 (2010): PA1102, doi:10.1029/2009PA001871.
    Description: Instrumental data suggest that major shifts in tropical Pacific atmospheric dynamics and hydrology have occurred within the past century, potentially in response to anthropogenic warming. To better understand these trends, we use the hydrogen isotopic ratios of terrestrial higher plant leaf waxes (δDwax) in marine sediments from southwest Sulawesi, Indonesia, to compile a detailed reconstruction of central Indo-Pacific Warm Pool (IPWP) hydrologic variability spanning most of the last two millennia. Our paleodata are highly correlated with a monsoon reconstruction from Southeast Asia, indicating that intervals of strong East Asian summer monsoon (EASM) activity are associated with a weaker Indonesian monsoon (IM). Furthermore, the centennial-scale oscillations in our data follow known changes in Northern Hemisphere climate (e.g., the Little Ice Age and Medieval Warm Period) implying a dynamic link between Northern Hemisphere temperatures and IPWP hydrology. The inverse relationship between the EASM and IM suggests that migrations of the Intertropical Convergence Zone and associated changes in monsoon strength caused synoptic hydrologic shifts in the IPWP throughout most of the past two millennia.
    Description: This research was supported by the U.S. NSF, the Ocean and Climate Change Institute at WHOI, and a National Defense Science and Engineering Graduate Fellowship to J. Tierney.
    Keywords: Tropical Pacific climate ; Compound-specific hydrogen isotopes
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/postscript
    Format: application/pdf
    Format: text/plain
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2012. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 117 (2012): D19108, doi:10.1029/2012JD018060.
    Description: Existing paleoclimate data suggest a complex evolution of hydroclimate within the Indo-Pacific Warm Pool (IPWP) during the Holocene epoch. Here we introduce a new leaf wax isotope record from Sulawesi, Indonesia and compare proxy water isotope data with ocean-atmosphere general circulation model (OAGCM) simulations to identify mechanisms influencing Holocene IPWP hydroclimate. Modeling simulations suggest that orbital forcing causes heterogenous changes in precipitation across the IPWP on a seasonal basis that may account for the differences in time-evolution of the proxy data at respective sites. Both the proxies and simulations suggest that precipitation variability during the September–November (SON) season is important for hydroclimate in Borneo. The preëminence of the SON season suggests that a seasonally lagged relationship between the Indian
    Description: J. Tierney acknowledges the NOAA Climate and Global Change Postdoctoral Fellowship for support.
    Description: 2013-04-04
    Keywords: Holocene climate ; Indian monsoon ; Indo-Pacific warm pool ; Leaf waxes ; Stable isotopes ; Walker circulation
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-26
    Description: Author Posting. © The Author(s), 2013. This is the author's version of the work. It is posted here by permission of Nature Publishing Group for personal use, not for redistribution. The definitive version was published in Nature Geoscience 6 (2013): 485–491, doi:10.1038/ngeo1823.
    Description: The Indo-Pacific Warm Pool – the Earth’s largest body of warm water and main source of heat and moisture to the global atmosphere – plays a prominent role in tropical and global climate change. The physical mechanisms driving changes in the warm pool over glacial-interglacial timescales are largely unknown. Here we show that during the Last Glacial Maximum (LGM) changes in global sea level influenced tropical climate by exposing the Sunda Shelf and altering the Walker Circulation. Our result is based on a synthesis of marine and terrestrial proxies sensitive to hydroclimate and a multi-model ensemble of climate simulations. The proxy data suggest drying throughout the warm pool, and wetter conditions in the western Indian and Pacific oceans. Only one model out of twelve simulates a similar pattern of hydroclimate change, as measured by the Cohen’s statistic. According to this model, weakened convection over the warm pool in response to exposure of the Sunda Shelf drives the proxy-inferred hydrological changes. Our study demonstrates that on glacial-interglacial timescales, ice sheets exert a first order influence on tropical climate through changes in global sea level.
    Description: Funding for this work was provided by NSF (grant AGS 1204011) and the University of Hawaii.
    Description: 2013-11-19
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...