GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2010-2014  (2)
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2013. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 118 (2013): 5322–5332, doi:10.1002/jgrc.20379.
    Description: By analyzing global data, we find that over large scales, surfaces of constant nitrate are often better aligned with isopycnals than with isobars, particularly below the euphotic zone. This is unexplained by the movement of isopycnal surfaces in response to eddies and internal waves, and is perhaps surprising given that the biological processes that alter nitrate distributions are largely depth dependent. We provide a theoretical framework for understanding the orientation of isonitrate surfaces in relation to isopycnals. In our model, the nitrate distribution results from the balance between depth-dependent biological processes (nitrate uptake and remineralization), and the along-isopycnal homogenization of properties by eddy fluxes (parameterized by eddy diffusivity). Where the along-isopycnal eddy diffusivity is relatively large, nitrate surfaces are better aligned with isopycnals than isobars. We test our theory by estimating the strength of the eddy diffusivity and biological export production from global satellite data sets and comparing their contributions. Indeed, we find that below the euphotic zone, the mean isonitrate surfaces are oriented along isopycnals where the isopycnal eddy diffusivity is large, and deviate where the biological export of organic matter is relatively strong. Comparison of nitrate data from profiling floats in different regions corroborates the hypothesis by showing variations in the nitrate-density relationship from one part of the ocean to another.
    Description: We acknowledge the support of the National Science Foundation (Grant OCE-0928617) and NASA (Grant NNX- 08AL80G).
    Description: 2014-04-15
    Keywords: Nitrate ; Export ; Mixing ; Isopycnal ; Alignment ; Large-scale
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-26
    Description: Author Posting. © Association for the Sciences of Limnology and Oceanography, 2012. This article is posted here by permission of Association for the Sciences of Limnology and Oceanography for personal use, not for redistribution. The definitive version was published in Limnology and Oceanography 57 (2012): 1673-1688, doi:10.4319/lo.2012.57.6.1673.
    Description: Three distinct phytoplankton blooms lasting 4–9 d were observed in approximately 15-m water depth near Huntington Beach, California, between June and October of 2006. Each bloom was preceded by a vertical NO3 flux event 6–10 d earlier. NO3 concentrations were estimated using a temperature proxy that was verified by comparison with the limited NO3 observations. The lower–water-column vertical NO3 flux from vertical advection was inferred from observed vertical isotherm displacement. Turbulent vertical eddy diffusivity was parameterized based on the observed background (〈 0.3 cycles h−1) stratification and vertical shear in the horizontal currents. The first vertical nitrate flux event in June contained both advective and turbulent fluxes, whereas the later two events were primarily turbulent, driven by shear in the lower part of the water column. The correlation between the NO3 flux and the observed chlorophyll a (Chl a) was maximum (r2 = 0.40) with an 8-d lag. A simple nitrate–phytoplankton model using a linear uptake function and driven with the NO3 flux captured the timing, magnitude, and duration of the three Chl a blooms (skill = 0.61) using optimal net growth rate parameters that were within the expected range. Vertical and horizontal advection of Chl a past the measurement site were too small to explain the observed Chl a increases during the blooms. The vertical NO3 flux was a primary control on the growth events, and estimation of both the advective (upwelled) and turbulent fluxes is necessary to best predict these episodic blooms.
    Description: California Sea Grant, National Oceanic and Atmospheric Administration, California Coastal Conservancy, National Science Foundation, and the Office of Naval Research supported this research.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...