GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © The Author(s), 2013. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Geochimica et Cosmochimica Acta 117 (2013): 33-52, doi:10.1016/j.gca.2013.03.021.
    Description: Submarine groundwater discharge (SGD) to the ocean supplies Sr with less radiogenic 87Sr/86Sr than seawater, and thus constitutes an important term in the Sr isotope budget in the modern ocean. However, few data exist for Sr in coastal groundwater or in the geochemically dynamic subterranean estuary (STE). We examined Sr concentrations and isotope ratios from nine globally-distributed coastal sites and characterized the behavior of Sr in the STE. Dissolved Sr generally mixed conservatively in the STE, although large differences were observed in the meteoric groundwater end-member Sr concentrations among sites (0.1 – 24 μM Sr). Strontium isotope exchange was observed in the STE at five of the sites studied, and invariably favored the meteoric groundwater end-member signature. Most of the observed isotope exchange occurred in the salinity range 5-15, and reached up to 40% exchange at salinity 10. Differences in fresh groundwater Sr concentrations and isotope ratios (87Sr/86Sr = 0.707-0.710) reflected aquifer lithology. The SGD end-member 87Sr/86Sr must be lower than modern seawater (i.e., less than 0.70916) in part because groundwater Sr concentrations are orders of magnitude higher in less-carbonate and volcanic island aquifers. A simple lithological model and groundwater Sr data compiled from the literature were used to estimate a global average groundwater end-member of 2.9 μM Sr with 87Sr/86Sr = 0.7089. This represents a meteoric-SGD-driven Sr input to the ocean of 0.7-2.8 × 1010 mol Sr y-1. Meteoric SGD therefore accounts for 2-8% of the oceanic Sr isotope budget, comparable to other known source terms, but is insufficient to balance the remainder of the budget. Using reported estimates for brackish SGD, the estimated volume discharge at salinity 10 (7-11 × 1015 L y-1) was used to evaluate the impact of isotope exchange in the STE on the brackish SGD Sr flux. A moderate estimate of 25% isotope exchange in the STE gives an SGD Sr end-member 87Sr/86Sr of 0.7091. The brackish SGD Sr flux thus accounts for 11-23% of the marine Sr isotope budget, but does not appear sufficient to balance the ~40% remaining after other known sources are included. Substantial uncertainties remain for estimating the SGD source of Sr to the global ocean, especially in the determination of the volume flux of meteoric SGD, and in the paucity of measurements of groundwater Sr isotope composition in major SGD regions such as Papua New Guinea, the South America west coast, and West Africa. Consequently, our global estimate should be viewed with some caution. Nevertheless, we show that the combined sources of meteoric SGD and brackish SGD coupled with isotope exchange in the STE may constitute a substantial component (~13-30%) of the modern oceanic 87Sr/86Sr budget, likely exceeding less radiogenic Sr inputs by sedimentary diagenesis and hydrothermal circulation through the mid-ocean ridge system. Temporal variation in SGD Sr fluxes and isotope composition may have contributed to fluctuations in the oceanic 87Sr/86Sr ratio over geologic time.
    Description: This project was supported by funding from the WHOI Coastal Ocean 670 Institute and the Tropical Research Initiative, and NSF OCE-0751525 to MAC. BPE acknowledges financial support from NSF ETBC-85101500 and a WHOI Coastal Ocean Institute Fellowship.
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-10-14
    Description: MedFlux sampling was carried out at the French JGOFS DYFAMED (DYnamique des Flux Atmospheriques en MEDiterranee) site in the Ligurian Sea (northwestern Mediterranean), 52km off Nice (431200N, 71400E) in 2300m water depth. In 2003, a mooring with sediment trap arrays was deployed 6 March (day of year, DOY 65) and recovered 6 May (DOY 126); this trap deployment will be referred to as Period 1 (P1). The array was redeployed a week later on 14 May (DOY 134) and recovered again on 30 June (DOY 181); this trap deployment will be referred to as Period 2 (P2). Indented-rotating sphere (IRS) valve traps were fitted with TS carousels to determine temporal variability of particulate matter flux. TS traps were fitted with ''dimpled'' spheres. Vertical flux at 200m depth is considered to be equivalent to new or export production, and traps sampled at 238 and 117m during P1 and P2, respectively. We also collected TS material at 711m during P1 and at 1918m during P2. Upon recovery, samples were split using a McLaneTM WSD splitter to allow multiple chemical analyses. Here we report 2003 data on TS particulate mass, and the contributions of organic carbon (OC), opal, lithogenic material and calcium carbonate to mass. In 2005, traps were deployed as described above for 55 d during a single period from 4 March (DOY 63) to 1 May (DOY 121). TS traps were fitted with ''dimpled'' spheres. TS particulate matter was collected from 313 to 924 m.
    Keywords: Calcium carbonate, flux; Carbon, inorganic, particulate, flux per day; Carbon, organic, particulate, flux; DATE/TIME; Date/time end; DEPTH, water; Duration, number of days; Event label; Flux of total mass; Lithogenic, flux; MedFlux; MedFlux_2003_P1_SV; MedFlux_2003_P1_TS; MedFlux_2003_P2_TS; MedFlux_2005_SV; MedFlux_2005_TS; Nitrogen, organic, particulate, flux per day; Sample code/label; Silica, particulate, flux per day; Trap, sediment; TRAPS
    Type: Dataset
    Format: text/tab-separated-values, 839 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2012-06-01
    Description: Methane seep deposits are common in the Upper Cretaceous Pierre Shale of the U.S. Western Interior. They contain a rich fauna including ammonites, bivalves, gastropods, sponges, corals, echinoids, crinoids, and fish. In an effort to understand the role of ammonites in these ecosystems, we examined a seep from the upper Campanian Didymoceras cheyennense Zone in Custer County, South Dakota, that contains molluscs with well-preserved shell material permitting isotopic analyses. Values of δ13C of the micritic limestone at the seep range from −46.94‰ to −11.49‰, confirming the influence of anaerobic oxidation of methane on the isotopic composition of the dissolved inorganic carbon reservoir. The ammonites also consistently display light values of δ13C ranging from −13.71‰ to 0.68‰. These values are generally lighter than those in nonseep specimens from age-equivalent rocks elsewhere in the basin (–1.75‰ to 3.42‰). In a single specimen of Baculites corrugatus from the seep, light δ13C values occur throughout ontogeny. These data suggest that ammonites incorporated isotopically light methane-derived carbon in their shells and lived near the vent fluids and methane-oxidizing bacteria. Both juvenile and adult specimens are present, implying that these ammonites spent their entire lives at the seep and formed an integral part of an interwoven community. The values of 87Sr/86Sr in the limestone and well-preserved fossils at the seep (0.707690–0.707728) are higher than that of the open ocean at this time (0.707659). These elevated values suggest that the seep fluids were imprinted with a radiogenic Sr signature, perhaps derived from equilibration with granitic deposits at depth during the initial uplift of the Black Hills.
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...