GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • 2010-2014  (12)
Publikationsart
Erscheinungszeitraum
Jahr
  • 1
    Publikationsdatum: 2019-09-23
    Beschreibung: We have integrated waveform and arrival-onset data collected in Costa Rica as part of the National Science Foundation (NSF)-sponsored Costa Rica Seismogenic Zone Experiment (CRSEIZE) and along central Costa Rica and Nicaragua as part of the German SFB 574 program. The five arrays, composed of different sensor types (one-and three-component land and ocean bottom seismometers and hydrophones), were archived using different software packages (Antelope and SEISAN) and were automatically and manually picked using various quality criteria resulting in a disparate set of pick weights. We evaluate pick quality using automated arrival detection and picking algorithm based on the wavelet transform and Akaike information criterion picker. The consistency of the arrival information over various scales provides a basis for assigning a quality to the analyst pick. Approximately 31% of P arrival times and 26% of S times have been classified as high-quality picks (quality 0-1). An additional 21% of P times and 27% of S arrivals are good quality (quality 2-3). The revised quality picks are mapped directly into new pick weights for inversion studies. We explore the effect of new weighting and removal of poor data by relocating hypocenters through a minimum 1D velocity model and conducting double-difference local earthquake tomography (LET). Analysis of the hypocenter relocation and seismic velocity tomography results suggest that using the improved quality determinations have a greater effect on improving sharpness in the velocity images than on the magnitude of hypocentral movement.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    facet.materialart.
    Unbekannt
    AGU (American Geophysical Union) | Wiley
    In:  Geochemistry, Geophysics, Geosystems, 15 (7). pp. 3035-3050.
    Publikationsdatum: 2018-02-28
    Beschreibung: We investigate potential relations between variations in seafloor relief and age of the incoming plate and interplate seismicity. Westward from Osa Peninsula in Costa Rica, a major change in the character of the incoming Cocos Plate is displayed by abrupt lateral variations in seafloor depth and thermal structure. Here a Mw 6.4 thrust earthquake was followed by three aftershock clusters in June 2002. Initial relocations indicate that the main shock occurred fairly trenchward of most large earthquakes along the Middle America Trench off central Costa Rica. The earthquake sequence occurred while a temporary network of OBH and land stations ∼80 km to the northwest were deployed. By adding readings from permanent local stations, we obtain uncommon P wave coverage of a large subduction zone earthquake. We relocate this catalog using a nonlinear probabilistic approach within both, a 1-D and a 3-D P wave velocity models. The main shock occurred ∼25 km from the trench and probably along the plate interface at 5–10 km depth. We analyze teleseismic data to further constrain the rupture process of the main shock. The best depth estimates indicate that most of the seismic energy was radiated at shallow depth below the continental slope, supporting the nucleation of the Osa earthquake at ∼6 km depth. The location and depth coincide with the plate boundary imaged in prestack depth-migrated reflection lines shot near the nucleation area. Aftershocks propagated downdip to the area of a 1999 Mw 6.9 sequence and partially overlapped it. The results indicate that underthrusting of the young and buoyant Cocos Ridge has created conditions for interplate seismogenesis shallower and closer to the trench axis than elsewhere along the central Costa Rica margin.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    facet.materialart.
    Unbekannt
    In:  [Poster] In: AGU Fall Meeting 2013, 09.-13.12.2013, San Francisco, USA .
    Publikationsdatum: 2013-10-23
    Materialart: Conference or Workshop Item , NonPeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    facet.materialart.
    Unbekannt
    In:  [Talk] In: The Lübeck Retreat, Collaborative Research Centre SFB 574 Volatiles and Fluids in Subduction Zones: Climate Feedback and Trigger Mechanisms for Natural Disasters, 23.05.-25.05.2012, Lübeck . The Lübeck Retreat, Collaborative Research Centre SFB 574 Volatiles and Fluids in Subduction Zones: Climate Feedback and Trigger Mechanisms for Natural Disasters : final colloquium of SFB 574 ; May 23-25, 2012; program & abstracts ; p. 1 .
    Publikationsdatum: 2019-09-23
    Beschreibung: Within the project SFB574, an “amphibious” network of 15 ocean bottom seismometers and 27 land stations was operated from April to October 2008 along 350 km from the outer-rise to the magmatic arc. Additional readings from 11 permanent stations of the Chilean Seismological Service were included in the database improving onshore coverage. One of the main goals of the project is to gain a detailed image of the crustal and upper mantle structure and the seismogenic zone by analyzing earthquake distribution and combined passive and active source seismic tomographic images. To achieve precise earthquake locations and to serve as an initial model for local earthquake tomography, we derived a P- and S-wave minimum-1D model using a very high-quality subset of 340 events (GAP ! 180°, at least 10 P-wave and 5 S-wave arrivals) and velocity information from a wideangle profile shot in the area. Most of the ~1200 earthquakes recorded in our target area were originated within the subducting slab down to ~140 km depth, with a higher concentration beneath the main cordillera, at depths of 80-110 km. Fewer events were generated at the outer-rise, at depths of ~20-40 km, closely following the NE-SW trend of the oceanic plate faulting. The database was relocated using the minimum 1-D model and a subset of 400 events (GAP ! 180°, at least 8 P-wave arrivals) with ~7000 observations was selected to perform a P-wave tomography. Our results confirm the strong, lateral velocity gradient in the forearc seen in previous works along the margin, interpreted as the transition between a paleoaccretionary complex and the seaward edge of the Paleozoic continental framework. The downdip limit of the interplate seismicity previous to the great earthquake was aparently controlled by a low-velocity anomaly at ~40 km depth, shallower than the deeper extent estimated by geodetic modeling of the rutpture and from aftershocks relocation for the Maule earthquake. The interplate seismicity nucleated from ~40 up to ~20 km depth, and did not extend up to the 100°C isotherm. It was sparse except for a cluster of ~1200 km2 offshore and SW of Pichilemu town, within an area where a locking " 75 % before the great earthquake has been estimated. The deep outer-rise seismicity and the low velocities on top suggest considerable hydration of the downgoing plate.
    Materialart: Conference or Workshop Item , NonPeerReviewed
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    facet.materialart.
    Unbekannt
    In:  [Talk] In: AGU Fall Meeting 2013, 09.-13.12.2013, San Francisco, USA .
    Publikationsdatum: 2013-10-23
    Materialart: Conference or Workshop Item , NonPeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    facet.materialart.
    Unbekannt
    In:  [Poster] In: ICDP/IODP Kolloquium Freiberg 2013, 25.-27.03.2013, Freiberg .
    Publikationsdatum: 2013-04-25
    Materialart: Conference or Workshop Item , NonPeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    facet.materialart.
    Unbekannt
    In:  [Talk] In: 2013 AGU Meeting of the Americas, 14.-17.05.2013, Cancun, Mexico .
    Publikationsdatum: 2013-04-25
    Materialart: Conference or Workshop Item , NonPeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    facet.materialart.
    Unbekannt
    Springer
    In:  International Journal of Earth Sciences, 103 (7). pp. 1747-1764.
    Publikationsdatum: 2017-05-23
    Beschreibung: Transition from subduction of normal to thickened oceanic crust occurs in the central portion of the Costa Rican margin, where large interplate earthquakes (M * 7) and abundant interseismic seismicity have been associated with subduction of bathymetric highs. We relocated *1,300 earthquakes recorded for 6 months by a combined on- and offshore seismological network using probabilistic earthquake relocation in a 3D P-wave velocity model. Most of the seismicity originated at the seismogenic zone of the plate boundary, appearing as an 18° dipping, planar cluster from 15 to 25–30 km depth, beneath the continental shelf. Several reverse focal mechanisms were resolved within the cluster. The upper limit of this interseismic interplate seismicity seems to be controlled primarily by the overlying-plate thickness and coherency, which in turn is governed by the erosional processes and fluid release and escape at temperatures lower than *100 to 120° C along the plate boundary. The downdip limit of the stick–slip behaviour collocates with relative low temperatures of *150 to 200° C, suggesting that it is controlled by serpentinization of the mantle wedge. The distribution of the interseismic interplate seismicity is locally modified by the presence of subducted seamounts at different depths. Unlike in northern Costa Rica, rupture of large earthquakes in the last two decades seems to coincide with the area defined by the interseismic interplate seismicity.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    facet.materialart.
    Unbekannt
    In:  [Poster] In: The Lübeck Retreat, Collaborative Research Centre SFB 574 Volatiles and Fluids in Subduction Zones: Climate Feedback and Trigger Mechanisms for Natural Disasters, 23.05.-25.05.2012, Lübeck .
    Publikationsdatum: 2012-08-02
    Beschreibung: The Costa Rica Seismogenesis Project (CRISP) is designed to explore the processes involved in the nucleation of large interplate earthquakes in erosional subduction zones. On 16 June 2002 a magnitude Mw=6.4 earthquake and its aftershocks may have nucleated at the subduction thrust to be penetrated and sampled by CRISP, ~40 km west of Osa Peninsula. Global event locations present uncertainties too large to prove that the event actually occurred at a location and depth reachable by riser drilling. We have compiled a database including foreshocks, the main shock, and ~400 aftershocks, with phase arrival times from all the seismological networks that recorded the 2002 Osa sequence locally. This includes a temporal network of ocean-bottom hydrophones (OBH) that happened to be installed close to the area at the time of the earthquake. The coverage increase provided by the OBH network allow us to better constrain the event relocations, and to further analyze the seismicity in the vicinity of Osa for the six months during which they were deployed. We derived a minimum 1D model and used probabilistic earthquake relocation. Moreover, we undertook teleseismic waveform inversion to provide additional constraints for the centroid depth of the 2002 Osa earthquake. The latter, together with the maximum likelihood hypocenter, places the main shock origin at 5 to 10 km depth, ~30 km landward from the trench. Along the Costa Rican seismogenic zone, the 2002 Osa sequence is the most recent. It nucleated in the SE region of the forearc where this erosional margin is underthrust by a seamount covered ocean plate. A Mw=6.9 earthquake sequence occurred in 1999, co-located with a subducted ridge and associated seamounts. The Osa mainshock and first hours of aftershocks began in the CRISP area, ~30 km seaward of the 1999 sequence. In the following two weeks, subsequent aftershocks migrated into the 1999 aftershock area and also clustered in an area updip from it. The Osa updip seismicity apparently occurred where interplate temperatures are ~100°C or less. In this study, we present the relocation of the 2002 Osa earthquake sequence and background seismicity using different techniques and a moment tensor inversion for the mainshock, and discuss the corresponding uncertainties, in an effort to provide further evidence that the planned Phase B of CRISP will be successful in drilling the seismogenic coupling zone.
    Materialart: Conference or Workshop Item , NonPeerReviewed
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    facet.materialart.
    Unbekannt
    In:  [Poster] In: The Lübeck Retreat, Collaborative Research SFB 574 Volatiles and Fluids in Subduction Zones: Climate Feedback and Trigger Mechanisms for Natural Disasters, 23.-25.05.2012, Lübeck . The Lübeck Retreat: final colloquium of SFB 574; May 23-25, 2012: program & abstracts ; p. 18 .
    Publikationsdatum: 2012-09-21
    Beschreibung: The eastern part of the oceanic Cocos Plate presents a heterogeneous crustal structure due to diverse origins and ages as well as plate-hot spot interaction. The complex structure of the oceanic plate directly influences the dynamics and geometry of the subduction zone along the Middle American Trench. In this work, an integrated interpretation of the slab geometry is presented based on three-dimensional density modelling of satellite-derived gravity data constrained by seismological information obtained by local networks. Results show the continuation of steep subduction from the Nicaraguan margin into northwestern Costa Rica followed by a shallower slab under the Central Cordillera toward the end of the Central American Volcanic Arc. To the southeast of the termination of the volcanic arc, the slab appears to steepen and continue as a coherent structure until reaching the landward projection of the Panama Fracture Zone. Overall a gradual change in the depth of intra-plate seismicity is observed reaching 220 km for the northwestern part and becoming shallower toward the southeast where it reaches a maximum depth of 70-75 km. The changes in the depth of the observed seismicity correlate with changes in the density structure of the subducting slab and may indicate that differences in the state of initial hydration of the oceanic lithosphere affect the depth reached by dehydration reactions in the subduction zone.
    Materialart: Conference or Workshop Item , NonPeerReviewed
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...