Skip to main content
Log in

The seismogenic zone in the Central Costa Rican Pacific margin: high-quality hypocentres from an amphibious network

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

Transition from subduction of normal to thickened oceanic crust occurs in the central portion of the Costa Rican margin, where large interplate earthquakes (M ~ 7) and abundant interseismic seismicity have been associated with subduction of bathymetric highs. We relocated ~1,300 earthquakes recorded for 6 months by a combined on- and offshore seismological network using probabilistic earthquake relocation in a 3D P-wave velocity model. Most of the seismicity originated at the seismogenic zone of the plate boundary, appearing as an 18° dipping, planar cluster from 15 to 25–30 km depth, beneath the continental shelf. Several reverse focal mechanisms were resolved within the cluster. The upper limit of this interseismic interplate seismicity seems to be controlled primarily by the overlying-plate thickness and coherency, which in turn is governed by the erosional processes and fluid release and escape at temperatures lower than ~100 to 120 °C along the plate boundary. The downdip limit of the stick–slip behaviour collocates with relative low temperatures of ~150 to 200 °C, suggesting that it is controlled by serpentinization of the mantle wedge. The distribution of the interseismic interplate seismicity is locally modified by the presence of subducted seamounts at different depths. Unlike in northern Costa Rica, rupture of large earthquakes in the last two decades seems to coincide with the area defined by the interseismic interplate seismicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Arroyo IG, Husen S, Flueh ER, Gossler J, Kissling E, Alvarado GE (2009) Three-dimensional P-wave velocity structure on the shallow part of the Central Costa Rican Pacific margin from local earthquake tomography using off- and onshore networks. Geophys J Int 179(2):827–849. doi:10.1111/j.1365-246X.2009.04342.x

    Article  Google Scholar 

  • Arroyo IG, Grevemeyer I, von Huene R, Husen S, Ranero CR, Behrmann J (2011) Interplate seismicity at the CRISP site: the 2002 Osa earthquake sequence. In: AGU Fall Meeting 2011, San Francisco

  • Avants M, Schwartz S, Newman A, DeShon H, Protti M, Güendel F (2001) Large underthrusting earthquakes beneath the Nicoya Peninsula, Costa Rica. In: AGU Fall Meeting 2001, San Francisco

  • Barckhausen U, Roeser HA, von Huene R (1998) Magnetic signature of upper plate structures and subducting seamounts at the convergent margin off Costa Rica. J Geophys Res 103(B4):7079–7093. doi:10.1029/98jb00163

    Article  Google Scholar 

  • Barckhausen U, Ranero CR, von Huene R, Cande SC, Roeser HA (2001) Revised tectonic boundaries in the Cocos Plate off Costa Rica: Implications for the segmentation of the convergent margin and for plate tectonic models. J Geophys Res 106(B9):19207–19220. doi:10.1029/2001jb000238

    Article  Google Scholar 

  • Bialas J, Flueh ER (1999) A new Ocean Bottom Seismometer (with a new type of datalogger). Sea Technol 40:41–46

    Google Scholar 

  • Bilek SL, Schwartz SY, DeShon HR (2003) Control of seafloor roughness on earthquake rupture behavior. Geology 31(5):455–458. doi:10.1130/0091-7613(2003)031<0455:COSROE>2.0.CO;2

    Article  Google Scholar 

  • Bondár I, Myers SC, Engdahl ER, Bergman EA (2004) Epicentre accuracy based on seismic network criteria. Geophys J Int 156(3):483–496. doi:10.1111/j.1365-246X.2004.02070.x

    Article  Google Scholar 

  • Byrne DE, Davis DM, Sykes LR (1988) Loci and maximum size of thrust earthquakes and the mechanics of the shallow region of subduction zones. Tectonics 7(4):833–857. doi:10.1029/TC007i004p00833

    Article  Google Scholar 

  • Corbi F, Funiciello F, Faccenna C, Ranalli G, Heuret A (2011) Seismic variability of subduction thrust faults: Insights from laboratory models. J Geophys Res 116(B6):B06304. doi:10.1029/2010jb007993

    Google Scholar 

  • DeMets C, Gordon RG, Argus DF, Stein S (1994) Effect of recent revisions to the geomagnetic reversal time scale on estimates of current plate motions. Geophys Res Lett 21(20):2191–2194. doi:10.1029/94gl02118

    Article  Google Scholar 

  • DeShon HR, Schwartz SY (2004) Evidence for serpentinization of the forearc mantle wedge along the Nicoya Peninsula, Costa Rica. Geophys Res Lett 31(21):L21611. doi:10.1029/2004gl021179

    Article  Google Scholar 

  • DeShon HR, Schwartz SY, Bilek SL, Dorman LM, Gonzalez V, Protti JM, Flueh ER, Dixon TH (2003) Seismogenic zone structure of the southern Middle America Trench, Costa Rica. J Geophys Res 108(B10):2491. doi:10.1029/2002jb002294

    Article  Google Scholar 

  • DeShon HR, Schwartz SY, Newman AV, González V, Protti M, Dorman LM, Dixon TH, Sampson DE, Flueh ER (2006) Seismogenic zone structure beneath the Nicoya Peninsula, Costa Rica, from three-dimensional local earthquake P- and S-wave tomography. Geophys J Int 164(1):109–124. doi:10.1111/j.1365-246X.2005.02809.x

    Article  Google Scholar 

  • Dessa JX, Klingelhoefer F, Graindorge D, André C, Permana H, Gutscher MA, Chauhan A, Singh SC, The S-OBSST (2009) Megathrust earthquakes can nucleate in the forearc mantle: evidence from the 2004 Sumatra event. Geology 37(7):659–662. doi:10.1130/g25653a.1

    Article  Google Scholar 

  • Dinc AN, Koulakov I, Thorwart M, Rabbel W, Flueh ER, Arroyo I, Taylor W, Alvarado G (2010) Local earthquake tomography of central Costa Rica: transition from seamount to ridge subduction. Geophys J Int 183(1):286–302. doi:10.1111/j.1365-246X.2010.04717.x

    Article  Google Scholar 

  • Dominguez S, Lallemand SE, Malavieille J, von Huene R (1998) Upper plate deformation associated with seamount subduction. Tectonophysics 293(3–4):207–224. doi:10.1016/S0040-1951(98)00086-9

    Article  Google Scholar 

  • Engdahl ER, van der Hilst R, Buland R (1998) Global teleseismic earthquake relocation with improved travel times and procedures for depth determination. Bull Seismol Soc Am 88(3):722–743

    Google Scholar 

  • Feng L, Newman AV, Protti M, González V, Jiang Y, Dixon TH (2012) Active deformation near the Nicoya Peninsula, northwestern Costa Rica, between 1996 and 2010: interseismic megathrust coupling. J Geophys Res 117(B6):B06407. doi:10.1029/2012jb009230

    Google Scholar 

  • Fisher DM, Gardner TW, Marshall JS, Sak PB, Protti M (1998) Effect of subducting sea-floor roughness on fore-arc kinematics, Pacific coast, Costa Rica. Geology 26(5):467–470. doi:10.1130/0091-7613(1998)026<0467:EOSSFR>2.3.CO;2

    Article  Google Scholar 

  • Fisher AT, Stein CA, Harris RN, Wang K, Silver EA, Pfender M, Hutnak M, Cherkaoui A, Bodzin R, Villinger H (2003) Abrupt thermal transition reveals hydrothermal boundary and role of seamounts within the Cocos Plate. Geophys Res Lett 30(11):1550. doi:10.1029/2002gl016766

    Article  Google Scholar 

  • Gardner T, Marshall J, Merritts D, Bee B, Burgette R, Burton E, Cooke J, Kehrwald N, Protti M, Fisher D, Sak P (2001) Holocene forearc block rotation in response to seamount subduction, southeastern Peninsula de Nicoya, Costa Rica. Geology 29(2):151–154. doi:10.1130/0091-7613(2001)029<0151:HFBRIR>2.0.CO;2

    Article  Google Scholar 

  • Giambalvo ER, Fisher AT, Martin JT, Darty L, Lowell RP (2000) Origin of elevated sediment permeability in a hydrothermal seepage zone, eastern flank of the Juan de Fuca Ridge, and implications for transport of fluid and heat. J Geophys Res 105(B1):913–928. doi:10.1029/1999jb900360

    Article  Google Scholar 

  • Grevemeyer I, Ranero CR, Flueh ER, Kläschen D, Bialas J (2007) Passive and active seismological study of bending-related faulting and mantle serpentinization at the Middle America trench. Earth Planet Sci Lett 258(3–4):528–542. doi:10.1016/j.epsl.2007.04.013

    Article  Google Scholar 

  • Güendel F (1986) Seismotectonics of Costa Rica: an analytical view of the southern terminus of the Middle America Trench. Ph.D. thesis, University of California, Santa Cruz

  • Harris RN, Wang K (2002) Thermal models of the Middle America Trench at the Nicoya Peninsula, Costa Rica. Geophys Res Lett 29(21):2010. doi:10.1029/2002gl015406

    Article  Google Scholar 

  • Harris RN, Spinelli G, Ranero CR, Grevemeyer I, Villinger H, Barckhausen U (2010) Thermal regime of the Costa Rican convergent margin: 2. Thermal models of the shallow Middle America subduction zone offshore Costa Rica. Geochem Geophys Geosyst 11(12):Q12S29. doi:10.1029/2010gc003273

    Google Scholar 

  • Harris RN, Solomon EA, Arroyo IG, Heuret A, Vannucchi P, Ujiie K, Scientific Team IODP Drilling Expedition 334 (2011) Thermal results from IODP Expedition 334: heat flow and thermal models along the CRISP Transect. In: AGU Fall Meeting 2011, San Francisco

  • Havskov J, Ottemöller L (2005) SEISAN: The Earthquake Analysis Software for Windows, Solaris, Linux and MacOsx, version 8.1. University of Bergen, Bergen

    Google Scholar 

  • Heuret A, Lallemand S, Funiciello F, Piromallo C, Faccenna C (2011) Physical characteristics of subduction interface type seismogenic zones revisited. Geochem Geophys Geosyst 12(1):Q01004. doi:10.1029/2010gc003230

    Article  Google Scholar 

  • Hinz K, von Huene R, Ranero CR, PACOMAR Working Group (1996) Tectonic structure of the convergent Pacific margin offshore Costa Rica from multichannel seismic reflection data. Tectonics 15(1):54–66. doi:10.1029/95tc02355

    Article  Google Scholar 

  • Husen S, Hardebeck JL (2010) Earthquake location accuracy. Community Online Resour Stat Seism Anal. doi:10.5078/corssa-55815573

  • Husen S, Smith RB (2004) Probabilistic earthquake relocation in three-dimensional velocity models for the Yellowstone National Park Region, Wyoming. Bull Seismol Soc Am 94(3):880–896. doi:10.1785/0120030170

    Article  Google Scholar 

  • Husen S, Kissling E, Quintero R (2002) Tomographic evidence for a subducted seamount beneath the Gulf of Nicoya, Costa Rica: the cause of the 1990 Mw = 7.0 Gulf of Nicoya earthquake. Geophys Res Lett 29(8):1238. doi:10.1029/2001gl014045

    Article  Google Scholar 

  • Husen S, Kissling E, Deichmann N, Wiemer S, Giardini D, Baer M (2003a) Probabilistic earthquake location in complex three-dimensional velocity models: application to Switzerland. J Geophys Res 108(B2):2077. doi:10.1029/2002jb001778

    Article  Google Scholar 

  • Husen S, Quintero R, Kissling E, Hacker B (2003b) Subduction-zone structure and magmatic processes beneath Costa Rica constrained by local earthquake tomography and petrological modelling. Geophys J Int 155(1):11–32. doi:10.1046/j.1365-246X.2003.01984.x

    Article  Google Scholar 

  • Hyndman RD, Peacock SM (2003) Serpentinization of the forearc mantle. Earth Planet Sci Lett 212(2003):417–432. doi:10.1016/S0012-821X(03)00263-2

    Article  Google Scholar 

  • Hyndman RD, Yamano M, Oleskevich DA (1997) The seismogenic zone of subduction thrust faults. Isl Arc 6(3):244–260. doi:10.1111/j.1440-1738.1997.tb00175.x

    Article  Google Scholar 

  • Kimura G, Silver EA, Blum P et al (1997) Proceedings of the Ocean Drilling Program, Initial Reports, vol 170. College Station, TX (Ocean Drilling Program). doi:10.2973/odp.proc.ir.170.1997

  • Kissling E, Kradolfer U, Maurer H (1995) VELEST user’s guide-short introduction. Institute of Geophysics and Swiss Seismological Service, ETH Zurich

    Google Scholar 

  • Langseth MG, Silver EA (1996) The Nicoya Convergent Margin—a region of exceptionally low heat flow. Geophys Res Lett 23(8):891–894. doi:10.1029/96gl00733

    Article  Google Scholar 

  • Lay T, Kanamori H, Ammon CJ, Koper KD, Hutko AR, Ye L, Yue H, Rushing TM (2012) Depth-varying rupture properties of subduction zone megathrust faults. J Geophys Res 117(B4):B04311. doi:10.1029/2011jb009133

    Google Scholar 

  • Linkimer L, Soto GJ (2012) El Terremoto de Sámara del 5 de setiembre del 2012. Red Sismologica Nacional (UCR-ICE), San Jose

    Google Scholar 

  • Lomax A, Virieux J, Volant P, Berge-Thierry C (2000) Probabilistic earthquake location in 3D and layered models. In: Thurber CH, Rabinowitz N (eds) Advances in seismic event location. Kluwer Academic, Dordrecht, pp 101–134

    Chapter  Google Scholar 

  • Lücke O (2012) Moho structure of Central America based on three-dimensional lithospheric density modelling of satellite-derived gravity data. Int J Earth Sci:1–13. doi:10.1007/s00531-012-0787-y

  • Mochizuki K, Yamada T, Shinohara M, Yamanaka Y, Kanazawa T (2008) Weak interplate coupling by seamounts and repeating M ~ 7 earthquakes. Science 321(5893):1194–1197. doi:10.1126/science.1160250

    Article  Google Scholar 

  • Moore JC, Saffer D (2001) Updip limit of the seismogenic zone beneath the accretionary prism of southwest Japan: an effect of diagenetic to low-grade metamorphic processes and increasing effective stress. Geology 29(2):183–186. doi:10.1130/0091-7613(2001)029<0183:ULOTSZ>2.0.CO;2

    Article  Google Scholar 

  • Moore JC, Rowe C, Meneghini F (2007) How accretionary prisms elucidate seismogenesis in subduction zones. In: Dixon TH, Moore JC (eds) The seismogenic zone of subduction thrust faults. Columbia University Press, New York, pp 288–315

    Google Scholar 

  • Moser TJ, van Eck T, Nolet G (1992) Hypocenter determination in strongly heterogeneous earth models using the shortest path method. J Geophys Res 97(B5):6563–6572. doi:10.1029/91jb03176

    Article  Google Scholar 

  • Nakada M, Tahara M, Shimizu H, Nagaoka S, Uehira K, Suzuki S (2002) Late Pleistocene crustal uplift and gravity anomaly in the eastern part of Kyushu, Japan, and its geophysical implications. Tectonophysics 351(4):263–283. doi:10.1016/S0040-1951(02)00161-0

    Article  Google Scholar 

  • Newman AV, Schwartz SY, Gonzalez V, DeShon HR, Protti JM, Dorman LM (2002) Along-strike variability in the seismogenic zone below Nicoya Peninsula, Costa Rica. Geophys Res Lett 29(20):1977. doi:10.1029/2002gl015409

    Article  Google Scholar 

  • Oleskevich DA, Hyndman RD, Wang K (1999) The updip and downdip limits to great subduction earthquakes: thermal and structural models of Cascadia, south Alaska, SW Japan, and Chile. J Geophys Res 104(B7):14965–14991. doi:10.1029/1999jb900060

    Article  Google Scholar 

  • Outerbridge KC, Dixon TH, Schwartz SY, Walter JI, Protti M, Gonzalez V, Biggs J, Thorwart M, Rabbel W (2010) A tremor and slip event on the Cocos-Caribbean subduction zone as measured by a global positioning system (GPS) and seismic network on the Nicoya Peninsula, Costa Rica. J Geophys Res 115(B10):B10408. doi:10.1029/2009jb006845

    Article  Google Scholar 

  • Pacheco JF, Sykes LR, Scholz CH (1993) Nature of seismic coupling along simple plate boundaries of the subduction type. J Geophys Res 98(B8):14133–14159. doi:10.1029/93jb00349

    Article  Google Scholar 

  • Pacheco JF, Quintero R, Vega F, Segura J, Jimenez W, Gonzalez V (2006) The Mw 6.4 Damas, Costa Rica, Earthquake of 20 November 2004: aftershocks and slip distribution. Bull Seismol Soc Am 96(4):1332–1343. doi:10.1785/0120050261

    Article  Google Scholar 

  • Protti M, Güendel F, McNally K (1994) The geometry of the Wadati-Benioff zone under southern Central America and its tectonic significance: results from a high-resolution local seismographic network. Phys Earth Planet Inter 84(1–4):271–287. doi:10.1016/0031-9201(94)90046-9

    Article  Google Scholar 

  • Protti M, McNally K, Pacheco J, González V, Montero C, Segura J, Brenes J, Barboza V, Malavassi E, Güendel F, Simila G, Rojas D, Velasco A, Mata A, Schillinger W (1995) The March 25, 1990 (Mw = 7.0, ML = 6.8), earthquake at the entrance of the Nicoya Gulf, Costa Rica: Its prior activity, foreshocks, aftershocks, and triggered seismicity. J Geophys Res 100(B10):20345–20358. doi:10.1029/94jb03099

    Article  Google Scholar 

  • Ranero CR, von Huene R, Flueh E, Duarte M, Baca D, McIntosh K (2000) A cross section of the convergent Pacific margin of Nicaragua. Tectonics 19(2):335–357. doi:10.1029/1999tc900045

    Article  Google Scholar 

  • Ranero CR, Phipps Morgan J, McIntosh K, Reichert C (2003) Bending-related faulting and mantle serpentinization at the Middle America trench. Nature 425(6956):367–373. doi:10.1038/nature01961

    Article  Google Scholar 

  • Ranero C, Vannucchi P, von Huene R (2007) Drilling the seismogenic zone of an Erosional convergent margin: IODP Costa Rica Seismogenesis Project CRISP. In: Abstracts and report from the IODP/ICDP Workshop on Fault Zone Drilling. Scientific Drilling: Special Issue. IODP-MI, Miyzaki, pp 51-54. doi:10.2204/iodp.sd.s01.29.2007

  • Ranero CR, Grevemeyer I, Sahling H, Barckhausen U, Hensen C, Wallmann K, Weinrebe W, Vannucchi P, von Huene R, McIntosh K (2008) Hydrogeological system of erosional convergent margins and its influence on tectonics and interplate seismogenesis. Geochem Geophys Geosyst. doi:10.1029/2007GC001679

    Google Scholar 

  • Rüpke LH, Morgan JP, Hort M, Connolly JAD (2004) Serpentine and the subduction zone water cycle. Earth Planet Sci Lett 223(1–2):17–34. doi:10.1016/j.epsl.2004.04.018

    Article  Google Scholar 

  • Sahling H, Masson DG, Ranero CR, Hühnerbach V, Weinrebe W, Klaucke I, Bürk D, Brückmann W, Suess E (2008) Fluid seepage at the continental margin offshore Costa Rica and southern Nicaragua. Geochem Geophys Geosyst 9(5):Q05S05. doi:10.1029/2008gc001978

    Article  Google Scholar 

  • Scholz CH (1998) Earthquakes and friction laws. Nature 391(6662):37–42. doi:10.1038/34097

    Article  Google Scholar 

  • Seno T (2005) Variation of downdip limit of the seismogenic zone near the Japanese islands: implications for the serpentinization mechanism of the forearc mantle wedge. Earth Planet Sci Lett 231(3–4):249–262. doi:10.1016/j.epsl.2004.12.027

    Article  Google Scholar 

  • Snoke JA (2003) FOCMEC: Focal MEChanism Determinations. In: Leem WHK, Kanamori H, Jennings PC, Kisslinger C (eds) International handbook of earthquake and engineering seismology. Academic Press, San Diego, p 1000

    Google Scholar 

  • Snoke JA, Munsey JW, Teague AC, Bollinger GA (1984) A program for focal mechanism determination by combined use of polarity and SV-P amplitude ratio data. Earthq Notes 55:15

    Google Scholar 

  • Spinelli GA, Saffer DM (2004) Along-strike variations in underthrust sediment dewatering on the Nicoya margin, Costa Rica related to the updip limit of seismicity. Geophys Res Lett 31(4):L04613. doi:10.1029/2003gl018863

    Article  Google Scholar 

  • Tahara M, Uehira K, Shimizu H, Nakada M, Yamada T, Mochizuki K, Shinohara M, Nishino M, Hino R, Yakiwara H, Miyamachi H, Umakoshi K, Goda M, Matsuwo N, Kanazawa T (2008) Seismic velocity structure around the Hyuganada region, Southwest Japan, derived from seismic tomography using land and OBS data and its implications for interplate coupling and vertical crustal uplift. Phys Earth Planet Inter 167(1–2):19–33. doi:10.1016/j.pepi.2008.02.001

    Article  Google Scholar 

  • Tarantola A, Valette B (1982) Inverse problems = quest for information. J Geophys 50:159–170

    Google Scholar 

  • Tichelaar BW, Ruff LJ (1993) Depth of seismic coupling along subduction zones. J Geophys Res 98(B2):2017–2037. doi:10.1029/92jb02045

    Article  Google Scholar 

  • Vannucchi P, Scholl DW, Meschede M, McDougall-Reid K (2001) Tectonic erosion and consequent collapse of the Pacific margin of Costa Rica: combined implications from ODP Leg 170, seismic offshore data, and regional geology of the Nicoya Peninsula. Tectonics 20(5):649–668. doi:10.1029/2000tc001223

    Article  Google Scholar 

  • Vannucchi P, Ranero CR, Galeotti S, Straub SM, Scholl DW, McDougall-Ried K (2003) Fast rates of subduction erosion along the Costa Rica Pacific margin: implications for nonsteady rates of crustal recycling at subduction zones. J Geophys Res 108(B11):2511. doi:10.1029/2002jb002207

    Article  Google Scholar 

  • von Huene R (2008) When seamounts subduct. Science 321(5893):1165–1166. doi:10.1126/science.1162868

    Article  Google Scholar 

  • von Huene R et al (1995) Morphotectonics of the Pacific convergent margin of Costa Rica. In: Mann P (ed) Geologic and tectonic development of the Caribbean Plate Boundary in Southern Central America, vol 295. Geological Society of America Special Papers, pp 291–307

  • von Huene R, Ranero CR, Weinrebe W, Hinz K (2000) Quaternary convergent margin tectonics of Costa Rica, segmentation of the Cocos Plate, and Central American volcanism. Tectonics 19(2):314–334. doi:10.1029/1999tc001143

    Article  Google Scholar 

  • von Huene R, Ranero CR, Vannucchi P (2004) Generic model of subduction erosion. Geology 32(10):913–916. doi:10.1130/G20563.1

    Article  Google Scholar 

  • Wada I, Wang K (2009) Common depth of slab-mantle decoupling: reconciling diversity and uniformity of subduction zones. Geochem Geophys Geosyst 10(10):Q10009. doi:10.1029/2009gc002570

    Article  Google Scholar 

  • Walther CHE (2003) The crustal structure of the Cocos ridge off Costa Rica. J Geophys Res 108(B3):2136. doi:10.1029/2001jb000888

    Article  Google Scholar 

  • Wang K, Bilek SL (2011) Do subducting seamounts generate or stop large earthquakes? Geology 39(9):819–822. doi:10.1130/G31856.1

    Article  Google Scholar 

  • Wang K, Hu Y, von Huene R, Kukowski N (2010) Interplate earthquakes as a driver of shallow subduction erosion. Geology 38(5):431–434. doi:10.1130/G30597.1

    Article  Google Scholar 

  • Werner R, Hoernle K, van den Bogaard P, Ranero C, von Huene R, Korich D (1999) Drowned 14-m.y.-old Galapagos archipelago off the coast of Costa Rica: implications for tectonic and evolutionary models. Geology 27(6):499–502. doi:10.1130/0091-7613(1999)027<0499:DMYOGP>2.3.CO;2

    Article  Google Scholar 

  • Wessel P, Smith WHF (1998) New, improved version of generic mapping tools released. EOS Trans Am Geophys Union 79(47):579

    Article  Google Scholar 

  • Ye S, Bialas J, Flueh ER, Stavenhagen A, von Huene R, Leandro G, Hinz K (1996) Crustal structure of the Middle American Trench off Costa Rica from wide-angle seismic data. Tectonics 15(5):1006–1021. doi:10.1029/96tc00827

    Article  Google Scholar 

Download references

Acknowledgments

We thank the outstanding work of the masters and crews of RV Sonne and RV Meteor during cruises SO163 and M54, respectively. GeoForschungsZentrum Potsdam generously provided the equipment for the temporal land network. The Instituto Costarricense de Electricidad contributed excellent field support and conducted the land explosion. We appreciate valuable insights from R. Harris and L. Linkimer and technical expertise by W. Pérez, N. Zamora, and G. Leandro. Most of the figures were created with the Generic Mapping Tool (GMT) by Wessel and Smith (1998). The constructive reviews from H. DeShon and an anonymous reviewer significantly improved the manuscript. This work is contribution 232 of the SFB574 “Volatiles and Fluids in Subduction Zones” at the University of Kiel, funded by the German Research Society (DFG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivonne G. Arroyo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arroyo, I.G., Husen, S. & Flueh, E.R. The seismogenic zone in the Central Costa Rican Pacific margin: high-quality hypocentres from an amphibious network. Int J Earth Sci (Geol Rundsch) 103, 1747–1764 (2014). https://doi.org/10.1007/s00531-013-0955-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-013-0955-8

Keywords

Navigation