GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Publikationsdatum: 2018-06-25
    Beschreibung: The growth and development of the aragonitic CaCO3 otoliths of teleost fish could be vulnerable to processes resulting from ocean acidification. The potential effects of an increase in atmospheric CO2 on the calcification of the otoliths were investigated by rearing Atlantic cod Gadus morhua L. larvae in 3 pCO2 concentrations—control (370 µatm), medium (1800 µatm) and high (4200 µatm)—from March to May 2010. Increased otolith growth was observed in 7 to 46 d post hatch (dph) cod larvae at elevated pCO2 concentrations. The sagittae and lapilli were usually largest in the high pCO2 treatment followed by the medium and control treatments. The greatest difference in mean otolith surface area (normalized to fish length) was for sagittae at 11 dph, with medium and high treatments being 46 and 43% larger than the control group, respectively. There was no significant pCO2 effect on the shape of the otoliths nor were there any trends in the fluctuating asymmetry, defined as the difference between the right and left sides, in relation to the increase in otolith growth from elevated pCO2.
    Materialart: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2019-09-23
    Beschreibung: The high mortality during fish early life stages is a major bottleneck in aquaculture. Therefore, the establishment of methods to prevent and control diseases, to ensure efficient growth and to reach maximal survival rates is mandatory to optimize the productivity. A promising solution can be the early activation of the immune system by administration of probiotics as nutritional supplements. In our study we assess the effect of the probiotic candidate Bacillus subtilis on the innate and adaptive immune response of juvenile European sea bass (Dicentrarchus labrax). Therefore, Artemia nauplii were used as live carriers to feed B. subtilis to 3-month-old sea bass over a period of 2 weeks. Subsequently, the juveniles were fed another week without administering B. subtilis in order to estimate the bacterial mucus-binding ability. During the course of the experiment, we evaluated direct effects on the cellular immune response by fluorescence-activated cell sorting analysis and on survival. As a next step we will determine profiles of immune gene expression. To estimate cellular stress, the expression level of metabolism- and stress-related genes will be measured. Furthermore, the RNA/DNA ratio as an indicator of growth will be analysed.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2019-01-23
    Beschreibung: The European sprat (Sprattus sprattus) was a main target species of the German GLOBEC program that investigated the trophodynamic structure and function of the Baltic and North Seas under the influence of physical forcing. This review summarizes literature on the ecophysiology of sprat with an emphasis on describing how environmental factors influence the life-history strategy of this small pelagic fish. Ontogenetic changes in feeding and growth, and the impacts of abiotic and biotic factors on vital rates are discussed with particular emphasis on the role of temperature as a constraint to life-history scheduling of this species in the Baltic Sea. A combination of field and laboratory data suggests that optimal thermal windows for growth and survival change during early life and are wider for eggs (5–17 °C) than in young (8- to 12-mm) early feeding larvae (5–12 °C). As larvae become able to successfully capture larger prey, thermal windows expand to include warmer waters. For example, 12- to 16-mm larvae can grow well at 16 °C and larger, transitional-larvae and early juveniles display the highest rates of feeding and growth at ~18–22 °C. Gaps in knowledge are identified including the need for additional laboratory studies on the physiology and behavior of larvae (studies that will be particularly critical for biophysical modeling activities) and research addressing the role of overwinter survival as a factor shaping phenology and setting limits on the productivity of this species in areas located at the northern limits of its latitudinal range (such as the Baltic Sea). Based on stage- and temperature-specific mortality and growth potential of early life stages, our analysis suggests that young-of-the year sprat would benefit from inhabiting warmer, near-shore environments rather than the deeper-water spawning grounds such as the Bornholm Basin (central Baltic Sea). Utilization of warmer, nearshore waters (or a general increase in Baltic Sea temperatures) is expected to accelerate growth rates but also enhance the possibility for density-dependent regulation of recruitment (e.g., top-down control of zooplankton resources) acting during the late-larval and juvenile stages, particularly when sprat stocks are at high levels.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Publikationsdatum: 2019-09-23
    Beschreibung: The dissolution of anthropogenically emitted excess carbon dioxide lowers the pH of the world's ocean water. The larvae of mass spawning marine fishes may be particularly vulnerable to such ocean acidification (OA), yet the generality of earlier results is unclear. Here we show the detrimental effects of OA on the development of a commercially important fish species, the Atlantic herring (Clupea harengus). Larvae were reared at three levels of CO2: today (0.0385 kPa), end of next century (0.183 kPa), and a coastal upwelling scenario (0.426 kPa), under near-natural conditions in large outdoor tanks. Exposure to elevated CO2 levels resulted in stunted growth and development, decreased condition, and severe tissue damage in many organs, with the degree of damage increasing with CO2 concentration. This complements earlier studies of OA on Atlantic cod larvae that revealed similar organ damage but at increased growth rates and no effect on condition.
    Materialart: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Publikationsdatum: 2019-07-10
    Beschreibung: Some studies have demonstrated that elevated CO2 concentrations in ocean waters negatively impact metabolism and development of marine fish. Particularly, early developmental stages are probably more susceptible to ocean acidification due to insufficient regulations of their acid-base balance. Transgenerational acclimation can be an important mechanism to mediate impacts of increased CO2 on marine species, yet very little is known about the potential of parental effects in teleosts. Therefore, transgenerational effects were investigated on life history in juvenile three-spined sticklebacks Gasterosteus aculeatus by acclimating parents (collected in April 2012, 55A degrees 03'N, 8A degrees 44'E) and offspring to ambient (similar to 400 A mu atm) and elevated (similar to 1,000 A mu atm) CO2 levels and measured parental fecundity as well as offspring survival, growth and otolith characteristics. Exposure to elevated CO2 concentrations led to an increase in clutch size in adults as well as increased juvenile survival and growth rates between 60 and 90 days post-hatch and enlarged otolith areas compared with fish from ambient CO2 concentrations. Moreover, transgenerational effects were observed in reduced survival and body size 30 days post-hatch as well as in enlarged otoliths at the end of the experiment, when fathers or both parents were acclimated to the high-CO2 environment. These results may suggest that elevated CO2 concentrations had rather positive effects on life-history traits of three-spined sticklebacks, but that parental acclimation can modify these effects without improving offspring fitness. Although the mechanistic basis of such transgenerational acclimation remains unclear, selective gradients within generations seem to determine the direction of transgenerational effects.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Publikationsdatum: 2018-06-29
    Beschreibung: The accumulation of carbon dioxide in the atmosphere will lower the pH in ocean waters, a process termed ocean acidification (OA). Despite its potentially detrimental effects on calcifying organisms, experimental studies on the possible impacts on fish remain scarce. While adults will most likely remain relatively unaffected by changes in seawater pH, early life-history stages are potentially more sensitive, due to the lack of gills with specialized ion-regulatory mechanisms. We tested the effects of OA on growth and development of embryos and larvae of eastern Baltic cod, the commercially most important fish stock in the Baltic Sea. Cod were reared from newly fertilized eggs to early non-feeding larvae in 5 different experiments looking at a range of response variables to OA, as well as the combined effect of CO2 and temperature. No effect on hatching, survival, development, and otolith size was found at any stage in the development of Baltic cod. Field data show that in the Bornholm Basin, the main spawning site of eastern Baltic cod, in situ levels of pCO2 are already at levels of 1,100 μatm with a pH of 7.2, mainly due to high eutrophication supporting microbial activity and permanent stratification with little water exchange. Our data show that the eggs and early larval stages of Baltic cod seem to be robust to even high levels of OA (3,200 μatm), indicating an adaptational response to CO2.
    Materialart: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    Publikationsdatum: 2019-07-09
    Beschreibung: Larval fish growth and survival depends not only on prey quantity, but also on prey quality. To investigate effects of prey fatty acid concentration on larval herring growth, we collected different prey organisms and larval herring (Clupea harengus L.) in the Kiel Canal during the spring season of 2009. Along with biotic background data, we analysed fatty acids both in prey organisms and in the larvae and used biochemically derived growth rates of the larvae as the response variable. Larval herring reached their highest RNA/DNA derived growth rates only at high docosahexaenoic acid (DHA) concentration. When the ratio of copepodids to lesser quality cirriped nauplii was low, larval growth and larval DHA concentration were both significantly negatively affected. This was true even as prey abundance was increasing. This finding indicates that even in mixed, natural feeding conditions, growth variations are associated with DHA availability in larval fish.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    Publikationsdatum: 2019-09-23
    Beschreibung: Plankton sampling was conducted in the Baltic to obtain sprat larvae. Their individual drift patterns were back-calculated using a hydrodynamic model. The modelled positions along the individual drift trajectories were subsequently used to provide insight into the environmental conditions experienced by the larvae. Autocorrelation analysis revealed that successive otolith increment widths of individual larvae were not independent. Otolith increment width was then modelled using two different generalized additive model (GAM) analyses (with and without autocorrelation), using environmental variables determined for each modelled individual larval position as explanatory variables. The results indicate that otolith growth was not only influenced by the density of potential prey but was controlled by a number of simultaneously acting environmental factors. The final model, not considering autocorrelation, explained more than 80% of the variance of otolith growth, with larval age as a factor variable showing the strongest significant impact on otolith growth. Otolith growth was further explained by statistically significant ambient environmental factors such as temperature, bottom depth, prey density and turbulence. The GAM analysis, taking autocorrelation into account, explained almost 98% of the variability, with the previous otolith increment showing the strongest significant effect. Larval age as well as ambient temperature and prey abundance also had a significant effect. An alternative approach applied individual-based model (IBM) simulations on larval drift, feeding, growth and survival starting as exogenously feeding larvae at the backcalculated positions. The IBM results revealed optimal growth conditions for more than 97% of the larvae, with a tendency for our IBM to slightly overestimate larval growth.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    Publikationsdatum: 2018-06-19
    Beschreibung: We examined the RNA and DNA concentration of field-caught scallops Chlamys islandica, maintained in suspended cultures at 15 and 30 m depth, and scallops from a wild population at 50 to 60 m in Kobbefjord, southwest Greenland. General relations between RNA and DNA concentrations and individual shell height were established, and we found that the RNA:DNA ratio (RD) worked well as a standardisation of the RNA concentration independent of size and sex. During an experimental period of 14 mo, we observed a pronounced seasonal pattern in RD and mass growth, and differences between depths. Even though the period with high levels of RD reflected the growth season relatively well, RD was a poor predictor of individual mass growth rates of C. islandica. However, we found a non-linear response in RD to increased food concentrations resulting in RD being up- and down-regulated at the beginning and end of the productive summer season, respectively. These results indicate that short-term dynamics in the actual mass growth rate might be controlled through regulation of ribosome activity rather than ribosome number (RNA concentration). This adaption would allow scallops to up-regulate protein synthesis more rapidly, thereby ensuring efficient utilisation of the intense peaks in food availability in coastal areas in the Arctic. Therefore, we suggest that RD in C. islandica reflects the growth potential rather than the actual growth rate. Still, the amount of unexplained variance in RD is considerable and not independent over time, suggesting the existence of unresolved mechanisms or relationships.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    Publikationsdatum: 2017-07-13
    Beschreibung: Gaining reliable estimates of how long fish early life stages can survive without feeding and how starvation rate and time until death are influenced by body size, temperature and species is critical to understanding processes controlling mortality in the sea. The present study is an across-species analysis of starvation-induced changes in biochemical condition in early life stages of nine marine and freshwater fishes. Data were compiled on changes in body size (dry weight, DW) and biochemical condition (standardized RNA–DNA ratio, sRD) throughout the course of starvation of yolk-sac and feeding larvae and juveniles in the laboratory. In all cases, the mean biochemical condition of groups decreased exponentially with starvation time, regardless of initial condition and endogenous yolk reserves. A starvation rate for individuals was estimated from discrete 75th percentiles of sampled populations versus time (degree-days, Dd). The 10th percentile of sRD successfully approximated the lowest, life-stage-specific biochemical condition (the edge of death). Temperature could explain 59% of the variability in time to death whereas DW had no effect. Species and life-stage-specific differences in starvation parameters suggest selective adaptation to food deprivation. Previously published, interspecific functions predicting the relationship between growth rate and sRD in feeding fish larvae do not apply to individuals experiencing prolonged food deprivation. Starvation rate, edge of death, and time to death are viable proxies for the physiological processes under food deprivation of individual fish pre-recruits in the laboratory and provide useful metrics for research on the role of starvation in the sea. Highlights ► Biochemical condition (RNA–DNA ratio) decreases exponentially during starvation. ► Starvation parameters of individuals can be derived from data collected on groups. ► Physiological rates of starvation compare well across a broad range of temperatures. ► Species and life stages specific starvation parameters indicate selective adaptation.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...