GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • 2015-2019  (4)
Publikationsart
Erscheinungszeitraum
Jahr
  • 1
    Publikationsdatum: 2022-01-31
    Beschreibung: Sections PDFPDF Tools Share Abstract Long‐term data characterizing the oceans' biological carbon pump are essential for understanding impacts of climate variability on marine ecosystems. The “Bakun upwelling intensification hypothesis” suggests intensified coastal upwelling due to a greater land‐sea temperature gradient influenced by global warming. We present long time series of bathypelagic (approximately 1,200–3,600 m) particle fluxes from a coastal (CBeu: 2003–2016) and an offshore (CBmeso: 1988–2016) sediment trap setting located in the Canary Current upwelling. Organic carbon (Corg) and biogenic opal (BSi, diatoms) fluxes were twofold to threefold higher at the coastal upwelling site compared to the offshore site, respectively, and showed higher seasonality with flux maxima in spring. A relationship between winter and spring BSi fluxes to the North Atlantic Oscillation index was best expressed at the offshore site CBmeso. Lithogenic (dust) fluxes regularly peaked in winter when frequent low‐altitude dust storms and deposition occurred, decreasing offshore by about threefold. We obtained a high temporal match of short‐term peaks of BSi and dust fluxes in winter to spring at the inner site CBeu. We found synchronous flux variations at both sites and an anomalous year 2005, characterized by high BSi and Corg fluxes under a low North Atlantic Oscillation. Corg and BSi fluxes revealed a decreasing trend from 2006 to 2016 at the coastal site CBeu, pointing to coastal upwelling relaxation during the last two decades. The permanent offshore upwelling zone of the deflected Canary Current represented by the flux record of CBmeso showed no signs of increasing upwelling as well which contradicts the Bakun hypothesis.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2019-09-30
    Beschreibung: Long‐term data characterizing the oceans' biological carbon pump are essential for understanding impacts of climate variability on marine ecosystems. The “Bakun upwelling intensification hypothesis” suggests intensified coastal upwelling due to a greater land‐sea temperature gradient influenced by global warming. We present long time series of bathypelagic (approximately 1,200–3,600 m) particle fluxes from a coastal (CBeu: 2003–2016) and an offshore (CBmeso: 1988–2016) sediment trap setting located in the Canary Current upwelling. Organic carbon (Corg) and biogenic opal (BSi, diatoms) fluxes were twofold to threefold higher at the coastal upwelling site compared to the offshore site, respectively, and showed higher seasonality with flux maxima in spring. A relationship between winter and spring BSi fluxes to the North Atlantic Oscillation index was best expressed at the offshore site CBmeso. Lithogenic (dust) fluxes regularly peaked in winter when frequent low‐altitude dust storms and deposition occurred, decreasing offshore by about threefold. We obtained a high temporal match of short‐term peaks of BSi and dust fluxes in winter to spring at the inner site CBeu. We found synchronous flux variations at both sites and an anomalous year 2005, characterized by high BSi and Corg fluxes under a low North Atlantic Oscillation. Corg and BSi fluxes revealed a decreasing trend from 2006 to 2016 at the coastal site CBeu, pointing to coastal upwelling relaxation during the last two decades. The permanent offshore upwelling zone of the deflected Canary Current represented by the flux record of CBmeso showed no signs of increasing upwelling as well which contradicts the Bakun hypothesis.
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Article , isiRev
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2017-02-23
    Beschreibung: A more than two-decadal sediment trap record from the Eastern Boundary Upwelling Ecosystem (EBUE) off Cape Blanc, Mauritania, is analysed with respect to deep ocean mass fluxes, flux components and their variability on seasonal to decadal timescales. The total mass flux revealed interannual fluctuations which were superimposed by fluctuations on decadal timescales. High winter fluxes of biogenic silica (BSi), used as a measure of marine production (mostly by diatoms) largely correspond to a positive North Atlantic Oscillation (NAO) index (December–March). However, this relationship is weak. The highest positive BSi anomaly was in winter 2004–2005 when the NAO was in a neutral state. More episodic BSi sedimentation events occurred in several summer seasons between 2001 and 2005, when the previous winter NAO was neutral or even negative. We suggest that distinct dust outbreaks and deposition in the surface ocean in winter and occasionally in summer/autumn enhanced particle sedimentation and carbon export on short timescales via the ballasting effect. Episodic perturbations of the marine carbon cycle by dust outbreaks (e.g. in 2005) might have weakened the relationships between fluxes and large-scale climatic oscillations. As phytoplankton biomass is high throughout the year, any dry (in winter) or wet (in summer) deposition of fine-grained dust particles is assumed to enhance the efficiency of the biological pump by incorporating dust into dense and fast settling organic-rich aggregates. A good correspondence between BSi and dust fluxes was observed for the dusty year 2005, following a period of rather dry conditions in the Sahara/Sahel region. Large changes of all bulk fluxes occurred during the strongest El Niño-Southern Oscillation (ENSO) in 1997–1999 where low fluxes were obtained for almost 1 year during the warm El Niño and high fluxes in the following cold La Niña phase. For decadal timescales, Bakun (1990) suggested an intensification of coastal upwelling due to increased winds (“Bakun upwelling intensification hypothesis”; Cropper et al., 2014) and global climate change. We did not observe an increase of any flux component off Cape Blanc during the past 2 and a half decades which might support this. Furthermore, fluxes of mineral dust did not show any positive or negative trends over time which might suggest enhanced desertification or “Saharan greening” during the last few decades.
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Article , isiRev
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    facet.materialart.
    Unbekannt
    PERGAMON-ELSEVIER SCIENCE LTD
    In:  EPIC3Progress In Oceanography, PERGAMON-ELSEVIER SCIENCE LTD, 137, pp. 1-11, ISSN: 0079-6611
    Publikationsdatum: 2017-06-01
    Beschreibung: We compared particle data from a moored video camera system with sediment trap derived fluxes at ∼1100 m depth in the highly dynamic coastal upwelling system off Cape Blanc, Mauritania. Between spring 2008 and winter 2010 the trap collected settling particles in 9-day intervals, while the camera recorded in-situ particle abundance and size-distribution every third day. Particle fluxes were highly variable (40–1200 mg m−2 d−1) and followed distinct seasonal patterns with peaks during spring, summer and fall. The particle flux patterns from the sediment traps correlated to the total particle volume captured by the video camera, which ranged from1 to 22 mm3 l−1. The measured increase in total particle volume during periods of high mass flux appeared to be better related to increases in the particle concentrations, rather than to increased average particle size. We observed events that had similar particle fluxes, but showed clear differences in particle abundance and size-distribution, and vice versa. Such observations can only be explained by shifts in the composition of the settling material, with changes both in particle density and chemical composition. For example, the input of wind-blown dust from the Sahara during September 2009 led to the formation of high numbers of comparably small particles in the water column. This suggests that, besides seasonal changes, the composition of marine particles in one region underlies episodical changes. The time between the appearance of high dust concentrations in the atmosphere and the increase lithogenic flux in the 1100 m deep trap suggested an average settling rate of 200 m d−1, indicating a close and fast coupling between dust input and sedimentation of the material.
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Article , isiRev
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...