GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Keywords: Forschungsbericht ; Klima ; Modell
    Type of Medium: Online Resource
    Pages: 1 Online-Ressource (45 Seiten, 7,62 MB) , Diagramme
    Language: German
    Note: Förderkennzeichen BMBF 01LP1165B. - Verbund-Nummer 01098145 , Paralleltitel dem englischen Berichtsblatt entnommen , Unterschiede zwischen dem gedruckten Dokument und der elektronischen Ressource können nicht ausgeschlossen werden , Zusammenfassungen in deutscher und englischer Sprache
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Keywords: Forschungsbericht ; Klima ; Prognose ; Modell
    Type of Medium: Online Resource
    Pages: 1 Online-Ressource (43 Seiten, 5,37 MB) , Diagramme
    Language: German
    Note: Förderkennzeichen BMBF 01LP1110A-01LP1110B. - Verbund-Nummer 01079265 , "Autor(en): Prof. Dr. Ulbrich, Uwe; M.Sc. Pasternack, Alexander; M.Sc. Richling, Andy; Dipl. Math. Höschel, Ines; Dr. Grieger, Jens; B.Sc. Landrock, Franz; PD Dr. Névir, Peter" - Berichtsblatt des Teilvorhabens I (Freie Universität Berlin) , "Autor(en): Dipl.-Met. Redl., Robert; Prof. Dr. Fink, Andreas H.; PD Dr. Pinto, Joaquim G." - Berichtsblatt des Teilvorhabens 2 (Universität zu Köln) der Druck-Ausgabe , Unterschiede zwischen dem gedruckten Dokument und der elektronischen Ressource können nicht ausgeschlossen werden , Mit deutscher und englischer Zusammenfassung
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Keywords: Forschungsbericht ; Klima ; Modell
    Type of Medium: Online Resource
    Pages: 1 Online-Ressource (44 Seiten, 5,34 MB) , Diagramme
    Language: German
    Note: Förderkennzeichen BMBF 01LP1520A , Verbundnummer 01163753 , Durchführende Institution dem Berichtsblatt entnommen , Sprache der Zusammenfassung: Deutsch, Englisch
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Ritschel, Christoph; Ulbrich, Uwe; Névir, Peter; Rust, Henning (2017): Precipitation extremes on multiple timescales - Bartlett-Lewis rectangular pulse model and intensity-duration-frequency curves. Hydrology and Earth System Sciences, 21(12), 6501-6517, https://doi.org/10.5194/hess-21-6501-2017
    Publication Date: 2023-01-13
    Description: For several hydrological modelling tasks, precipitation time-series with a high (i.e. sub-daily) resolution are indispensable. This data is, however, not always available and thus model simulations are used to compensate. A canonical class of stochastic models for sub-daily precipitation are Poisson-cluster processes, with the Bartlett-Lewis rectangular pulse model (BLRPM) as a prominent representative. The BLRPM has been shown to well reproduce certain characteristics found in observations. Our focus is on intensity-duration-frequency relationship (IDF), which are of particular interest in risk assessment. Based on a high resolution precipitation time-series (5-min) from Berlin-Dahlem, BLRPM parameters are estimated and IDF curves are obtained on the one hand directly from the observations and on the other hand from BLRPM simulations. Comparing the resulting IDF curves suggests that the BLRPM is able to reproduce main features of IDF statistics across several durations but cannot capture singular events (here an event of magnitude 5 times larger than the second larges event). Here, IDF curves are estimated based on a parametric model for the duration dependence of the scale parameter in the General Extreme Value distribution; this allows to obtain a consistent set of curves over all durations. We use the BLRPM to investigate the validity of this approach based on simulated long time series.
    Keywords: Berlin, Germany; Berlin-Dahlem_BotGarden; DATE/TIME; ORDINAL NUMBER; Precipitation; Tipping bucket; Weather station/meteorological observation; WST
    Type: Dataset
    Format: text/tab-separated-values, 113952 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Kadow, Christopher; Illing, Sebastian; Kröner, Igor; Ulbrich, Uwe; Cubasch, Ulrich (2017): Decadal climate predictions improved by ocean ensemble dispersion filtering. Journal of Advances in Modeling Earth Systems, https://doi.org/10.1002/2016MS000787
    Publication Date: 2023-01-13
    Description: Decadal predictions by Earth system models aim to capture the state and phase of the climate several years in advance. Atmosphere-ocean interaction plays an important role for such climate forecasts. While short-term weather forecasts represent an initial value problem and long-term climate projections represent a boundary condition problem, the decadal climate prediction falls in-between these two timescales. In recent years, more precise initialization techniques of coupled Earth system models and increased ensemble sizes have improved decadal predictions. However, climate models in general start losing the initialized signal and its predictive skill from one forecast year to the next. Here we show that the climate prediction skill of an Earth system model can be improved by a shift of the ocean state towards the ensemble mean of its individual members at seasonal intervals. We found that this procedure, called ensemble dispersion filter, results in more accurate results than the standard decadal prediction. Global mean and regional temperature, precipitation, and winter cyclone predictions show an increased skill up to 5 years ahead. Furthermore, the novel technique outperforms predictions with larger ensembles and higher resolution. Our results demonstrate how decadal climate predictions benefit from ocean ensemble dispersion filtering towards the ensemble mean.
    Keywords: File content; File format; File name; File size; Uniform resource locator/link to file
    Type: Dataset
    Format: text/tab-separated-values, 20 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2020-02-06
    Description: This paper introduces the Distribution-Independent Storm Severity Index (DI-SSI). The DI-SSI represents an approach to quantify the severity of exceptional surface wind speeds of large scale windstorms that is complementary to the SSI introduced by Leckebusch et al. While the SSI approaches the extremeness of a storm from a meteorological and potential loss (impact) perspective, the DI-SSI defines the severity in a more climatological perspective. The idea is to assign equal index values to wind speeds of the same singularity (e.g. the 99th percentile) under consideration of the shape of the tail of the local wind speed climatology. Especially in regions at the edge of the classical storm track, the DI-SSI shows more equitable severity estimates, e.g. for the extra-tropical cyclone Klaus. In order to compare the indices, their relation with the North Atlantic Oscillation is studied, which is one of the main large scale drivers for the intensity of European windstorms.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    American Meteorological Society
    In:  Journal of Hydrometeorology, 16 (1). pp. 465-472.
    Publication Date: 2020-07-23
    Description: The Water and Global Change (WATCH) forcing datasets have been created to support the use of hydrological and land surface models for the assessment of the water cycle within climate change studies. They are based on 40-yr ECMWF Re-Analysis (ERA-40) or ECMWF interim reanalysis (ERA-Interim) with temperatures (among other variables) adjusted such that their monthly means match the monthly temperature dataset from the Climatic Research Unit. To this end, daily minimum, maximum, and mean temperatures within one calendar month have been subjected to a correction involving monthly means of the respective month. As these corrections can be largely different for adjacent months, this procedure potentially leads to implausible differences in daily temperatures across the boundaries of calendar months. We analyze day-to-day temperature fluctuations within and across months and find that across-months differences are significantly larger, mostly in the tropics and frigid zones. Average across-months differences in daily mean temperature are typically between 10% and 40% larger than their corresponding within-months average temperature differences. However, regions with differences up to 200% can be found in tropical Africa. Particularly in regions where snowmelt is a relevant player for hydrology, a few degrees Celsius difference can be decisive for triggering this process. Daily maximum and minimum temperatures are affected in the same regions, but in a less severe way.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    Copernicus Publications
    In:  Natural Hazards and Earth System Sciences, 16 . pp. 2391-2402.
    Publication Date: 2019-02-01
    Description: This paper describes an approach to derive probabilistic predictions of local winter storm damage occurrences from a global medium-range ensemble prediction system (EPS). Predictions of storm damage occurrences are subject to large uncertainty due to meteorological forecast uncertainty (typically addressed by means of ensemble predictions) and uncertainties in modelling weather impacts. The latter uncertainty arises from the fact that local vulnerabilities are not known in sufficient detail to allow for a deterministic prediction of damages, even if the forecasted gust wind speed contains no uncertainty. Thus, to estimate the damage model uncertainty, a statistical model based on logistic regression analysis is employed, relating meteorological analyses to historical damage records. A quantification of the two individual contributions (meteorological and damage model uncertainty) to the total forecast uncertainty is achieved by neglecting individual uncertainty sources and analysing resulting predictions. Results show an increase in forecast skill measured by means of a reduced Brier score if both meteorological and damage model uncertainties are taken into account. It is demonstrated that skilful predictions on district level (dividing the area of Germany into 439 administrative districts) are possible on lead times of several days. Skill is increased through the application of a proper ensemble calibration method, extending the range of lead times for which skilful damage predictions can be made.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-02-01
    Description: A German national project coordinates research on improving a global decadal climate prediction system for future operational use. MiKlip, an eight-year German national research project on decadal climate prediction, is organized around a global prediction system comprising the climate model MPI-ESM together with an initialization procedure and a model evaluation system. This paper summarizes the lessons learned from MiKlip so far; some are purely scientific, others concern strategies and structures of research that targets future operational use. Three prediction-system generations have been constructed, characterized by alternative initialization strategies; the later generations show a marked improvement in hindcast skill for surface temperature. Hindcast skill is also identified for multi-year-mean European summer surface temperatures, extra-tropical cyclone tracks, the Quasi-Biennial Oscillation, and ocean carbon uptake, among others. Regionalization maintains or slightly enhances the skill in European surface temperature inherited from the global model and also displays hindcast skill for wind-energy output. A new volcano code package permits rapid modification of the predictions in response to a future eruption. MiKlip has demonstrated the efficacy of subjecting a single global prediction system to a major research effort. The benefits of this strategy include the rapid cycling through the prediction-system generations, the development of a sophisticated evaluation package usable by all MiKlip researchers, and regional applications of the global predictions. Open research questions include the optimal balance between model resolution and ensemble size, the appropriate method for constructing a prediction ensemble, and the decision between full-field and anomaly initialization. Operational use of the MiKlip system is targeted for the end of the current decade, with a recommended generational cycle of two to three years.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-02-01
    Description: NOAA 20th century and ERA-20C reanalysis datasets are evaluated regarding the representation of extra-tropical cyclones and windstorms over the Northern and Southern Hemisphere during the respective 6-month winter seasons. The results indicate substantial differences in low-frequency variability between the two datasets – especially in the first half of the 20th century – expressed in different signs and/or magnitudes of long-term trends. This is hampering a reliable analysis of real long-term trends of cyclone and windstorm activity. However, higher-frequency variability is in good agreement between both datasets especially for the Northern Hemisphere.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...