GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2015-2019  (76)
Document type
Keywords
Years
Year
  • 1
    Publication Date: 2021-02-08
    Description: The manganese nodule belt within the Clarion and Clipperton Fracture Zones (CCZ) in the abyssal NE Pacific Ocean is characterized by numerous seamounts, low organic matter (OM) depositional fluxes and meter-scale oxygen penetration depths (OPD) into the sediment. The region hosts contract areas for the exploration of polymetallic nodules and Areas of Particular Environmental Interest (APEI) as protected areas. In order to assess the impact of potential mining on these deep-sea sediments and ecosystems, a thorough determination of the natural spatial variability of depositional and geochemical conditions as well as biogeochemical processes and element fluxes in the different exploration areas is required. Here, we present a comparative study on (1) sedimentation rates and bioturbation depths, (2) redox zonation of the sediments and element fluxes as well as (3) rates and pathways of biogeochemical reactions at six sites in the eastern CCZ. The sites are located in four European contract areas and in the APEI3. Our results demonstrate that the natural spatial variability of depositional and (bio)geochemical conditions in this deep-sea sedimentary environment is much larger than previously thought. We found that the OPD varies between 1 and 4.5 m, while the sediments at two sites are oxic throughout the sampled interval (7.5 m depth). Below the OPD, manganese and nitrate reduction occur concurrently in the suboxic zone with pore-water Mn2+ concentrations of up to 25 µM. The thickness of the suboxic zone extends over depth intervals of less than 3 m to more than 8 m. Our data and the applied transport-reaction model suggest that the extension of the oxic and suboxic zones is ultimately determined by the (1) low flux of particulate organic carbon (POC) of 1–2 mg Corg m−2 d−1 to the seafloor, (2) low sedimentation rates between 0.2 and 1.15 cm kyr−1 and (3) oxidation of pore-water Mn2+ at depth. The diagenetic model reveals that aerobic respiration is the main biogeochemical process driving OM degradation. Due to very low POC fluxes of 1 mg Corg m−2 d−1 to the seafloor at the site investigated in the protected APEI3 area, respiration rates are twofold lower than at the other study sites. Thus, the APEI3 site does not represent the (bio)geochemical conditions that prevail in the other investigated sites located in the European contract areas. Lateral variations in surface water productivity are generally reflected in the POC fluxes to the seafloor across the various areas but deviate from this trend at two of the study sites. We suggest that the observed spatial variations in depositional and (bio)geochemical conditions result from differences in the degree of degradation of OM in the water column and heterogeneous sedimentation patterns caused by the interaction of bottom water currents with seafloor topography.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-03-14
    Keywords: Alkalinity, total; Aluminium; Ammonium; Barium; Boron; Bromide; Calcium; Chloride; Conductivity; Copper; DEPTH, sediment/rock; Event label; GC; GeoB13918; GeoB13919; GeoB13925; GeoB13926; GeoB13928; GeoB13929; GeoB13930; GeoB13934; GeoB13939; GeoB13940; GeoB13946; GeoB13952; GeoB13953; Gravity corer; Iron; Leibniz Centre for Tropical Marine Research; Lithium; Magnesium; Manganese; Oxidation reduction (RedOx) potential; pH; Phosphorus; POS386; Poseidon; Potassium; Silicon; Sodium; Strontium; Sulfate; Sulfur; Zinc; ZMT; δ18O; δ18O, standard deviation; δ Deuterium; δ Deuterium, standard deviation
    Type: Dataset
    Format: text/tab-separated-values, 5330 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-03-14
    Keywords: -; DEPTH, sediment/rock; Event label; GC; GeoB13919; GeoB13925; GeoB13926; GeoB13928; GeoB13929; GeoB13930; GeoB13934; GeoB13939; GeoB13940; GeoB13946; GeoB13952; GeoB13953; Gravity corer; Leibniz Centre for Tropical Marine Research; pH; POS386; Poseidon; Saturation index; ZMT
    Type: Dataset
    Format: text/tab-separated-values, 1872 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Volz, Jessica B; Mogollón, José M; Geibert, Walter; Martínez Arbizu, Pedro; Koschinsky, Andrea; Kasten, Sabine (2018): Natural spatial variability of depositional conditions, biogeochemical processes and element fluxes in sediments of the eastern Clarion-Clipperton Zone, Pacific Ocean. Deep Sea Research Part I: Oceanographic Research Papers, 140, 159-172, https://doi.org/10.1016/j.dsr.2018.08.006
    Publication Date: 2023-03-16
    Description: The manganese nodule belt within the Clarion and Clipperton Fracture Zones (CCZ) in the abyssal NE Pacific Ocean is characterized by numerous seamounts, low organic matter (OM) depositional fluxes and meter-scale oxygen penetration depths (OPD) into the sediment. The region hosts contract areas for the exploration of polymetallic nodules and Areas of Particular Environmental Interest (APEI) as protected areas. In order to assess the impact of potential mining on these deep-sea sediments and ecosystems, a thorough determination of the natural spatial variability of depositional and geochemical conditions as well as biogeochemical processes and element fluxes in the different exploration areas is required. Here, we present a comparative study on (1) sedimentation rates and bioturbation depths, (2) redox zonation of the sediments and element fluxes as well as (3) rates and pathways of biogeochemical reactions at six sites in the eastern CCZ. The sites are located in four European contract areas and in the APEI3. Our results demonstrate that the natural spatial variability of depositional and (bio)geochemical conditions in this deep-sea sedimentary environment is much larger than previously thought. We found that the OPD varies between 1 and 4.5 m, while the sediments at two sites are oxic throughout the sampled interval (7.5 m depth). Below the OPD, manganese and nitrate reduction occur concurrently in the suboxic zone with pore-water Mn2+ concentrations of up to 25 µM. The thickness of the suboxic zone extends over depth intervals of less than 3 m to more than 8 m. Our data and the applied transport-reaction model suggest that the extension of the oxic and suboxic zones is ultimately determined by the (1) low flux of particulate organic carbon (POC) of 1–2 mg Corg m−2 d−1 to the seafloor, (2) low sedimentation rates between 0.2 and 1.15 cm kyr−1 and (3) oxidation of pore-water Mn2+ at depth. The diagenetic model reveals that aerobic respiration is the main biogeochemical process driving OM degradation. Due to very low POC fluxes of 1 mg Corg m−2 d−1 to the seafloor at the site investigated in the protected APEI3 area, respiration rates are twofold lower than at the other study sites. Thus, the APEI3 site does not represent the (bio)geochemical conditions that prevail in the other investigated sites located in the European contract areas. Lateral variations in surface water productivity are generally reflected in the POC fluxes to the seafloor across the various areas but deviate from this trend at two of the study sites. We suggest that the observed spatial variations in depositional and (bio)geochemical conditions result from differences in the degree of degradation of OM in the water column and heterogeneous sedimentation patterns caused by the interaction of bottom water currents with seafloor topography.
    Keywords: AWI_MarGeoChem; JPI Oceans - Ecological Aspects of Deep-Sea Mining; JPIO-MiningImpact; Marine Geochemistry @ AWI
    Type: Dataset
    Format: application/zip, 23 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2023-03-28
    Keywords: BIO12-60KL; BIONOD; DEPTH, sediment/rock; KULC; KULLENBERG corer; L Atalante; NODKUL3; North Pacific Ocean; Oxygen
    Type: Dataset
    Format: text/tab-separated-values, 170 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2023-03-28
    Keywords: BIO12-53KL; BIONOD; DEPTH, sediment/rock; KULC; KULLENBERG corer; L Atalante; NODKUL2; North Pacific Ocean; Oxygen
    Type: Dataset
    Format: text/tab-separated-values, 166 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2023-03-28
    Keywords: BIO12-53KL; BIONOD; DEPTH, sediment/rock; KULC; KULLENBERG corer; L Atalante; Nitrate; NODKUL2; North Pacific Ocean; Phosphate
    Type: Dataset
    Format: text/tab-separated-values, 93 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2023-03-28
    Keywords: BIO12-53KL; BIONOD; Carbon, organic, total; DEPTH, sediment/rock; KULC; KULLENBERG corer; L Atalante; NODKUL2; North Pacific Ocean
    Type: Dataset
    Format: text/tab-separated-values, 46 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2023-03-28
    Keywords: BIO12-60KL; BIONOD; DEPTH, sediment/rock; KULC; KULLENBERG corer; L Atalante; Nitrate; NODKUL3; North Pacific Ocean; Phosphate
    Type: Dataset
    Format: text/tab-separated-values, 95 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Mewes, Konstantin; Mogollón, José M; Picard, Aude; Rühlemann, Carsten; Eisenhauer, Anton; Kuhn, Thomas; Ziebis, Wiebke; Kasten, Sabine (2016): Diffusive transfer of oxygen from seamount basaltic crust into overlying sediments: an example from the Clarion-Clipperton Fracture Zone. Earth and Planetary Science Letters, 433, 215-225, https://doi.org/10.1016/j.epsl.2015.10.028
    Publication Date: 2023-01-13
    Description: The Clarion-Clipperton Fracture Zone (CCFZ) in the Pacific Ocean is characterized by organic carbon-starved sediments and meter-scale oxygen penetration into the sediment. Furthermore, numerous seamounts occur throughout its deep-sea plain, which may serve as conduits for low-temperature hydrothermal circulation of seawater through the oceanic crust. Recent studies in deep-sea environments of the Pacific and Atlantic Oceans have suggested and presented evidence of an exchange of dissolved constituents between the seawater flowing in the basaltic crust and the pore water of the overlying sediments. Through high-resolution pore-water oxygen and nutrient measurements, we examined fluxes and geochemical interactions between the seamount basaltic basement and pore waters of the overlying sediments at three sites located on a radial transect from the foot of Teddy Bare, a small seamount in the CCFZ. At three sites, located 1000, 700 and 400 m away from the foot of the seamount, we found that oxygen concentrations initially decrease with sediment depth but start to increase at depths of 3 and 7 m towards the basaltic basement. NO32- concentrations mirror the oxygen concentration profiles, as they increase with sediment depth but decrease towards the basement. We performed transport reaction modeling and determined at one site the 87Sr/86Sr ratio of the pore water and the bottom water overlying the sediments, which indicated that the 87Sr/86Sr ratio of the pore water at the bottom of the sediment column is similar to the seawater Transport-reaction modeling revealed that (1) the diffusive flux of oxygen from the basaltic basement outpaces the oxygen consumption through organic matter oxidation and nitrification in the basal sediments and (2) the nutrient exchange between the sediment and the underlying basaltic crust occurs at orders-of-magnitude lower rates than between the upper sediment and the overlying bottom water. Our results suggest an upward diffusion of oxygen from seawater circulating within the seamount crust into the overlying basal sediments. The oxygen profiles presented here represent the first of their kind ever measured in the Pacific Ocean, as they indicate an upward flux of molecular oxygen from a basaltic aquifer, something that has so far only been documented - at one other location worldwide - the North Pond site in the Atlantic Ocean. We show that the diffusion of oxygen from the seamount basaltic basement into the overlying pore waters affects the preservation of organic compounds and helps to maintain a completely oxygenated sedimentary column at all 3 sites near the seamount.
    Type: Dataset
    Format: application/zip, 10 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...