GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2015-2019  (3)
Document type
Years
Year
  • 1
    facet.materialart.
    Unknown
    PERGAMON-ELSEVIER SCIENCE LTD
    In:  EPIC3Quaternary Science Reviews, PERGAMON-ELSEVIER SCIENCE LTD, 198, pp. 76-90, ISSN: 0277-3791
    Publication Date: 2018-09-17
    Description: The hydrogen isotopic composition (2H/1H, or d2H) of palmitic acid (PA) was measured in surface sediments from the Laptev and Kara Seas in the Russian Arctic to evaluate its use as a paleohydrographic proxy. d2HPA values in surface sediments varied by 118‰ over a 21 ppt range in mean annual surface salinity, and the two properties were highly correlated (R2 ¼ 0.8, p 〈 0.001) according to the relationship d2HPA ¼ 4.22 (±0.60)*S - 338 (±15). In contrast, d2H values of vascular plant wax n-alkanes (nC27, nC29, nC31) did not change systematically with salinity. These differing lipid d2H trends support the interpretation of PA as derived primarily from marine microalgae at these sites. Both the range and absolute values of d2HPA compared favorably to those predicted from published Arctic Ocean salinity and water isotope data and the expected response of d2HPA to salinity in cultured phytoplankton. Some 64e74% of the observed sedimentary d2HPA increase is estimated to have resulted from increasing d2Hwater values, with the remainder resulting from decreased 2H-discrimination during lipid biosynthesis at higher salinities. The large signal and high sensitivity of d2HPA to surface salinity changes in the Russian Arctic was exploited to test the hypothesis that floodwaters emanated from the Mackenzie River during the late deglacial period. Measurements of d2HPA were performed in a sediment core from the continental slope off the Mackenzie River in the Canadian Arctic. In samples from the top Bølling/Allerød-Younger Dryas period, reconstructed surface salinities (and d2HPA values) off the Mackenzie River declined from 20 ("253‰) to 16 ("269‰) before rebounding to 24 ("236‰) in the early Holocene, close to the modern value of ~25. A large salinity depression in the Canadian Arctic just prior to the start of the Younger Dryas would support the hypothesis of a northern routing of flood-waters from glacial Lake Agassiz via the Mackenzie River as a trigger for the Younger Dryas event.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-09-12
    Description: Much uncertainty exists about the state of the oceanic and atmospheric circulation in the tropical Pacific over the last glacial cycle. Studies have been hampered by the fact that sediment cores suitable for study were concentrated in the western and eastern parts of the tropical Pacific, with little information from the central tropical Pacific. Here we present information from a suite of sediment cores collected from the Line Islands Ridge in the central tropical Pacific, which show sedimentation rates and stratigraphies suitable for paleoceanographic investigations. Based on the radiocarbon and oxygen isotope measurements on the planktonic foraminifera Globigerinoides ruber, we construct preliminary age models for selected cores and show that the gradient in the oxygen isotope ratio of G. ruber between the equator and 8°N is enhanced during glacial stages relative to interglacial stages. This stronger gradient could reflect enhanced equatorial cooling (perhaps reflecting a stronger Walker circulation) or an enhanced salinity gradient (perhaps reflecting increased rainfall in the central tropical Pacific).
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-02-01
    Description: The Line Islands Ridge (LIR), located south of the Hawaiian Islands between 7°N and 1°S, is one of the few large central Pacific regions shallower than the regional carbonate compensation depth. Thick sequences of carbonate sediments have accumulated around the LIR despite it being located in the sediment-starved central tropical Pacific. The LIR is an important source of carbonates to the surrounding region and deposition around the LIR has expanded the equatorial Pacific carbonate sediment tongue by about 5% of its total area. Furthermore, sediments on the ridge are potentially important paleoceanographic archives. A recent survey at the crest of the LIR finds evidence for high current activity, significant erosion, but overall net sediment deposition. Currents are strong enough to form sediment waves and lee drifts in the Palmyra Basin, at the northern terminus of the LIR. Sediments along the LIR are pelagic foraminiferal sands that are easily eroded and flow out into the surrounding abyssal plain in active submarine channel systems. As channels migrate, pelagic sediments fill in the abandoned channel arms. Despite significant sediment losses from the top of the ridge, 1.3 km of sediment has accumulated in the upper Palmyra Basin over basement formed 68 to 85 million years ago (Ma). Late Neogene erosion may be more extensive than earlier erosion cycles, in response to reduced sediment production as the Palmyra Basin exited the high productivity equatorial latitudes. Sediments with good stratigraphic order needed for paleoceanographic study are limited in this dynamic sedimentary environment, but can be found with proper survey.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...