GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Keywords: Forschungsbericht ; Meerwasser ; Kohlendioxid ; Versauerung ; Biogeochemie
    Type of Medium: Book
    Pages: 23 S. , Ill., graph. Darst.
    Language: German
    Note: Förderkennzeichen BMBF 03F0608 A-O. - Verbund-Nr. 01073496
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Keywords: Forschungsbericht ; Meerwasser ; Kohlendioxid ; Versauerung ; Biogeochemie
    Type of Medium: Book
    Pages: 23 Seiten , Illustrationen, Diagramme
    Language: English
    Note: Förderkennzeichen BMBF 03F0608 A-O. - Verbund-Nr. 01073496
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Koeve, Wolfgang; Kähler, Paul (2010): Heterotrophic denitrification vs. autotrophic anammox – quantifying collateral effects on the oceanic carbon cycle. Biogeosciences, 7(8), 2327-2337, https://doi.org/10.5194/bg-7-2327-2010
    Publication Date: 2023-02-24
    Description: The conversion of fixed nitrogen to N2 in suboxic waters is estimated to contribute roughly a third to total oceanic losses of fixed nitrogen and is hence understood to be of major importance to global oceanic production and, therefore, to the role of the ocean as a sink of atmospheric CO2. At present heterotrophic denitrification and autotrophic anammox are considered the dominant sinks of fixed nitrogen. Recently, it has been suggested that the trophic nature of pelagic N2-production may have additional, "collateral" effects on the carbon cycle, where heterotrophic denitrification provides a shallow source of CO2 and autotrophic anammox a shallow sink. Here, we analyse the stoichiometries of nitrogen and associated carbon conversions in marine oxygen minimum zones (OMZ) focusing on heterotrophic denitrification, autotrophic anammox, and dissimilatory nitrate reduction to nitrite and ammonium in order to test this hypothesis quantitatively. For open ocean OMZs the combined effects of these processes turn out to be clearly heterotrophic, even with high shares of the autotrophic anammox reaction in total N2-production and including various combinations of dissimilatory processes which provide the substrates to anammox. In such systems, the degree of heterotrophy (deltaCO2:deltaN2), varying between 1.7 and 6.5, is a function of the efficiency of nitrogen conversion. On the contrary, in systems like the Black Sea, where suboxic N-conversions are supported by diffusive fluxes of NH4+ originating from neighbouring waters with sulphate reduction, much lower values of Delta CO2:Delta N2 can be found. However, accounting for concomitant diffusive fluxes of CO2, the ratio approaches higher values similar to those computed for open ocean OMZs. Based on this analysis, we question the significance of collateral effects concerning the trophic nature of suboxic N-conversions on the marine carbon cycle.
    Keywords: BIOACID; Biological Impacts of Ocean Acidification
    Type: Dataset
    Format: application/zip, 19.9 kBytes
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    AGU (American Geophysical Union) | Wiley
    In:  Global Biogeochemical Cycles, 31 (8). pp. 1236-1255.
    Publication Date: 2020-02-06
    Description: There is currently no consensus on how humans are affecting the marine nitrogen (N) cycle, which limits marine biological production and CO2 uptake. Anthropogenic changes in ocean warming, deoxygenation, and atmospheric N deposition can all individually affect the marine N cycle and the oceanic production of the greenhouse gas nitrous oxide (N2O). However, the combined effect of these perturbations on marine N cycling, ocean productivity, and marine N2O production is poorly understood. Here we use an Earth system model of intermediate complexity to investigate the combined effects of estimated 21st century CO2 atmospheric forcing and atmospheric N deposition. Our simulations suggest that anthropogenic perturbations cause only a small imbalance to the N cycle relative to preindustrial conditions (∼+5 Tg N y−1 in 2100). More N loss from water column denitrification in expanded oxygen minimum zones (OMZs) is counteracted by less benthic denitrification, due to the stratification-induced reduction in organic matter export. The larger atmospheric N load is offset by reduced N inputs by marine N2 fixation. Our model predicts a decline in oceanic N2O emissions by 2100. This is induced by the decrease in organic matter export and associated N2O production and by the anthropogenically driven changes in ocean circulation and atmospheric N2O concentrations. After comprehensively accounting for a series of complex physical-biogeochemical interactions, this study suggests that N flux imbalances are limited by biogeochemical feedbacks that help stabilize the marine N inventory against anthropogenic changes. These findings support the hypothesis that strong negative feedbacks regulate the marine N inventory on centennial time scales.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-02-08
    Description: The ocean is the main source of thermal inertia in the climate system1. During recent decades, ocean heat uptake has been quantified by using hydrographic temperature measurements and data from the Argo float program, which expanded its coverage after 20072,3. However, these estimates all use the same imperfect ocean dataset and share additional uncertainties resulting from sparse coverage, especially before 20074,5. Here we provide an independent estimate by using measurements of atmospheric oxygen (O2) and carbon dioxide (CO2)—levels of which increase as the ocean warms and releases gases—as a whole-ocean thermometer. We show that the ocean gained 1.33 ± 0.20 × 1022 joules of heat per year between 1991 and 2016, equivalent to a planetary energy imbalance of 0.83 ± 0.11 watts per square metre of Earth’s surface. We also find that the ocean-warming effect that led to the outgassing of O2 and CO2 can be isolated from the direct effects of anthropogenic emissions and CO2 sinks. Our result—which relies on high-precision O2 measurements dating back to 19916—suggests that ocean warming is at the high end of previous estimates, with implications for policy-relevant measurements of the Earth response to climate change, such as climate sensitivity to greenhouse gases7 and the thermal component of sea-level rise8.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    Frontiers
    In:  Frontiers in Microbiology, 9 . Art.Nr. 2112.
    Publication Date: 2021-03-19
    Description: Fixed nitrogen (N) limits productivity across much of the low-latitude ocean. The magnitude of its inventory results from the balance of N input and N loss, the latter largely occurring in regionally well-defined low-oxygen waters and sediments (denitrification and anammox). The rate and distribution of N input by biotic N2 fixation, the dominant N source, is not well known. Here we compile N2 fixation estimates from experimental measurements, tracer-based geochemical and modelling approaches, and discuss their limitations and uncertainties. The lack of adequate experimental data coverage and the unsufficient understanding of the controls of marine N2 fixation result in high uncertainties, which make the assessment of the current N-balance a challenge. We suggest that a more comprehensive understanding of the environmental and ecological interaction of marine N2 fixers is required to advance the field towards robust N2 fixation rates estimates and predictions.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    The Royal Society
    In:  Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 375 (2102). p. 20160325.
    Publication Date: 2020-02-06
    Description: Observational estimates and numerical models both indicate a significant overall decline in marine oxygen levels over the past few decades. Spatial patterns of oxygen change, however, differ considerably between observed and modelled estimates. Particularly in the tropical thermocline that hosts open-ocean oxygen minimum zones, observations indicate a general oxygen decline, whereas most of the state-of-the-art models simulate increasing oxygen levels. Possible reasons for the apparent model-data discrepancies are examined. In order to attribute observed historical variations in oxygen levels, we here study mechanisms of changes in oxygen supply and consumption with sensitivity model simulations. Specifically, the role of equatorial jets, of lateral and diapycnal mixing processes, of changes in the wind-driven circulation and atmospheric nutrient supply, and of some poorly constrained biogeochemical processes are investigated. Predominantly wind-driven changes in the low-latitude oceanic ventilation are identified as a possible factor contributing to observed oxygen changes in the low-latitude thermocline during the past decades, while the potential role of biogeochemical processes remains difficult to constrain. We discuss implications for the attribution of observed oxygen changes to anthropogenic impacts and research priorities that may help to improve our mechanistic understanding of oxygen changes and the quality of projections into a changing future.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    AGU (American Geophysical Union) | Wiley
    In:  Earth's Future, 5 (12). pp. 1252-1266.
    Publication Date: 2020-11-23
    Description: The potential of Coastal Ocean Alkalinization (COA), a carbon dioxide removal (CDR) climate engineering strategy that chemically increases ocean carbon uptake and storage, is investigated with an Earth system model of intermediate complexity. The CDR potential and possible environmental side effects are estimated for various COA deployment scenarios, assuming olivine as the alkalinity source in ice-free coastal waters (about 8.6% of the global ocean's surface area), with dissolution rates being a function of grain size, ambient seawater temperature and pH. Our results indicate that for a large-enough olivine deployment of small-enough grain sizes (10 μm), atmospheric CO2 could be reduced by more than 800 GtC by the year 2100. However, COA with coarse olivine grains (1000 μm) has little CO2 sequestration potential on this time scale. Ambitious CDR with fine olivine grains would increase coastal aragonite saturation Ω to levels well beyond those that are currently observed. When imposing upper limits for aragonite saturation levels (Ωlim) in the grid boxes subject to COA (Ωlim = 3.4 and 9 chosen as examples), COA still has the potential to reduce atmospheric CO2 by 265 GtC (Ωlim=3.4) to 790 GtC (Ωlim=9) and increase ocean carbon storage by 290 Gt (Ωlim=3.4) to 913 Gt (Ωlim=9) by year 2100.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    Copernicus Publications (EGU)
    In:  Geoscientific Model Development, 8 . pp. 2079-2094.
    Publication Date: 2019-09-23
    Description: The natural abundance of 14C in total CO2 dissolved in seawater is a property applied to evaluate the water age structure and circulation in the ocean and in ocean models. In this study we use three different representations of the global ocean circulation augmented with a suite of idealised tracers to study the potential and limitations of using natural 14C to determine water age, the time elapsed since a body of water had contact with the atmosphere. We find that, globally, bulk 14C-age is dominated by two equally important components, one associated with aging, i.e. the time component of circulation and one associated with a "preformed 14C-age". This latter quantity exists because of the slow and incomplete atmosphere/ocean equilibration of 14C in particular in high latitudes where many water masses form. The relative contribution of the preformed component to bulk 14C-age varies regionally within a given model, but also between models. Regional variability, e.g. in the Atlantic Ocean is associated with the mixing of waters with very different end members of preformed 14C-age. In the Atlantic, variations in the preformed component over space and time mask the circulation component to an extent that its patterns are not detectable from bulk 14C-age alone. Between models the variability of age can also be considerable (factor of 2), related to the combinations of physical model parameters, which influence circulation dynamics, and gas exchange in the models. The preformed component was found to be very sensitive to gas exchange and moderately sensitive to ice cover. In our model evaluation exercise, the choice of the gas exchange constant from within the current range of uncertainty had such a strong influence on preformed and bulk 14C-age that if model evaluation would be based on bulk 14C-age it could easily impair the evaluation and tuning of a models circulation on global and regional scales. Based on the results of this study, we propose that considering preformed 14C-age is critical for a correct assessment of circulation in ocean models.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    AGU (American Geophysical Union) | Wiley
    In:  Geophysical Research Letters, 42 (11). pp. 4482-4489.
    Publication Date: 2020-06-29
    Description: Growing slowly, marine N2 fixers are generally expected to be competitive only where nitrogen (N) supply is low relative to that of phosphorus (P) with respect to the cellular N:P ratio (R) of non-fixing phytoplankton. This is at odds with observed high N2 fixation rates in the oligotrophic North Atlantic where the ratio of nutrients supplied to the surface is elevated in N relative to the average R (16:1). In this study, we investigate several mechanisms to solve this puzzle: iron limitation, phosphorus enhancement by preferential remineralization or stoichiometric diversity of phytoplankton, and dissolved organic phosphorus (DOP) utilization. Combining resource competition theory and a global coupled ecosystem-circulation model we find that the additional N and energy investments required for exo-enzymatic break-down of DOP gives N2 fixers a competitive advantage in oligotrophic P-starved regions. Accounting for this mechanism expands the ecological niche of N2-fixers also to regions where the nutrient supply is high in N relative to R, yielding, in our model, a pattern consistent with the observed high N2-fixation rates in the oligotrophic North Atlantic.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...