GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Book
    Book
    New York : Columbia Univ. Press
    Type of Medium: Book
    Series Statement: Vema research series ...
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    PANGAEA
    In:  Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven | Supplement to: Driemel, Amelie; Fahrbach, Eberhard; Rohardt, Gerd; Beszczynska-Möller, Agnieszka; Boetius, Antje; Budéus, Gereon; Cisewski, Boris; Engbrodt, Ralph; Gauger, Steffen; Geibert, Walter; Geprägs, Patrizia; Gerdes, Dieter; Gersonde, Rainer; Gordon, Arnold L; Grobe, Hannes; Hellmer, Hartmut H; Isla, Enrique; Jacobs, Stanley S; Janout, Markus A; Jokat, Wilfried; Klages, Michael; Kuhn, Gerhard; Meincke, Jens; Ober, Sven; Østerhus, Svein; Peterson, Ray G; Rabe, Benjamin; Rudels, Bert; Schauer, Ursula; Schumacher, Stefanie; Schröder, Michael; Sieger, Rainer; Sildam, Jüri; Soltwedel, Thomas; Stangeew, Elena; Stein, Manfred; Strass, Volker H; Thiede, Jörn; Tippenhauer, Sandra; Veth, Cornelis; von Appen, Wilken-Jon; Weirig, Marie-France; Wisotzki, Andreas; Wolf-Gladrow, Dieter A; Kanzow, Torsten (2017): From pole to pole: 33 years of physical oceanography onboard R/V Polarstern. Earth System Science Data, 9(1), 211-220, https://doi.org/10.5194/essd-9-211-2017
    Publication Date: 2023-10-18
    Description: Measuring temperature and salinity profiles in the world's oceans is crucial to understanding ocean dynamics and its influence on the heat budget, the water cycle, the marine environment and on our climate. Since 1983 the German research vessel and icebreaker Polarstern has been the platform of numerous CTD (conductivity, temperature, depth instrument) deployments in the Arctic and the Antarctic. We report on a unique data collection spanning 33 years of polar CTD data. In total 131 data sets (1 data set per cruise leg) containing data from 10 063 CTD casts are now freely available. During this long period five CTD types with different characteristics and accuracies have been used. Therefore the instruments and processing procedures (sensor calibration, data validation, etc.) are described in detail. This compilation is special not only with regard to the quantity but also the quality of the data - the latter indicated for each data set using defined quality codes. The complete data collection includes a number of repeated sections for which the quality code can be used to investigate and evaluate long-term changes. Beginning with 2010, the salinity measurements presented here are of the highest quality possible in this field owing to the introduction of the OPTIMARE Precision Salinometer.
    Keywords: Author(s); AWI_PhyOce; Campaign; Date/time end; Date/time start; Method comment; Number of observations; Ocean and sea region; Persistent Identifier; Physical Oceanography @ AWI; Principal investigator; Quality code; Uniform resource locator/link to image; Uniform resource locator/link to reference
    Type: Dataset
    Format: text/tab-separated-values, 1695 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-08-10
    Description: Measuring temperature and salinity profiles in the world's oceans is crucial to understanding ocean dynamics and its influence on the heat budget, the water cycle, the marine environment and on our climate. Since 1983 the German research vessel and icebreaker Polarstern has been the platform of numerous CTD (conductivity, temperature, depth instrument) deployments in the Arctic and the Antarctic. We report on a unique data collection spanning 33 years of polar CTD data. In total 131 data sets (1 data set per cruise leg) containing data from 10 063 CTD casts are now freely available at doi:10.1594/PANGAEA.860066. During this long period five CTD types with different characteristics and accuracies have been used. Therefore the instruments and processing procedures (sensor calibration, data validation, etc.) are described in detail. This compilation is special not only with regard to the quantity but also the quality of the data – the latter indicated for each data set using defined quality codes. The complete data collection includes a number of repeated sections for which the quality code can be used to investigate and evaluate long-term changes. Beginning with 2010, the salinity measurements presented here are of the highest quality possible in this field owing to the introduction of the OPTIMARE Precision Salinometer.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-25
    Description: Author Posting. © The Oceanography Society, 2015. This article is posted here by permission of The Oceanography Society for personal use, not for redistribution. The definitive version was published in Oceanography 28, no. 4 (2015): 54–63, doi:10.5670/oceanog.2015.81.
    Description: Current structure, transport, and water mass properties of the northward-flowing Kuroshio and the southward-flowing Luzon Undercurrent (LU) were observed for nearly one year, June 8, 2012–June 4, 2013, across the Kuroshio path at 18.75°N. Observations were made from four platforms: an array of six subsurface ADCP moorings, two Seagliders, fivepressure inverted echo sounders (PIES), and five horizontal electric field (HEF) sensors, providing the most detailed time series of the Kuroshio and Luzon Undercurrent water properties to date. Ocean state estimates of the western boundary current system were performed using the MIT general circulation model—four-dimensional variational assimilation (MITgcm-4D-Var) system. Prominent Kuroshio features from observations are simulated well by the numerical model. Annual mean Kuroshio transport, averaged over all platforms, is ~16 Sv with a standard deviation ~4 Sv. Kuroshio and LU transports and water mass pathways east of Luzon are revealed by Seaglider measurements. In a layer above the salinity maximum associated with North Pacific Tropical Water (NPTW), Kuroshio transport is ~7 Sv and contains North Equatorial Current (NEC) and Western Philippine Sea (WPS) waters, with an insignificant amount of South China Sea water on the shallow western flank. In an intermediate layer containing the core of the NPTW, Kuroshio transport is ~10 Sv, consisting mostly of NEC water. In the lower layer of the Kuroshio, transport is ~1.5 Sv of mostly North Pacific Intermediate Water (NPIW) as a part of WPS waters. Annual mean Luzon Undercurrent southward transport integrated to 1,000 m depth is ~2.7 Sv with a standard deviation ~2 Sv, carrying solely WPS waters below the salinity minimum of the NPIW. The transport of the western boundary current integrated over the full ocean depth east of Luzon Island is ~14 ± 4.5 Sv. Sources of the water masses in the Kuroshio and Luzon Undercurrent are confirmed qualitatively by the numerical model.
    Description: This work was supported by the US Office of Naval Research (N00014-10-1-0273 and N00014-15-1-2285 to BDC, N00014-10-1-0273 to GG, N00014-14-1-0065 to ALG, N00014-10-1-0468 to TBS, N0001-10-1-0273 to LRC, N00014-10-1-0308 to CML, N00014-10-1-0397 and N00014-10-1-0273 to BM, N00014-10-1-0397 to RCL, and N00014-10-1-0268 to SRJ) and the Taiwan Ministry of Science and Technology. Yang, Chang, and Mensah are supported by the Taiwan Ministry of Science and Technology.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-25
    Description: Author Posting. © The Oceanography Society, 2015. This article is posted here by permission of The Oceanography Society for personal use, not for redistribution. The definitive version was published in Oceanography 28, no. 1 (2015): 150-159, doi:10.5670/oceanog.2015.15.
    Description: One of the notable features of the global ocean is that the salinity of the North Atlantic is about 1 psu higher than that of the North Pacific. This contrast is thought to be due to one of the large asymmetries in the global water cycle: the transport of water vapor by the trade winds across Central America and the lack of any comparable transport into the Atlantic from the Sahara Desert. Net evaporation serves to maintain high Atlantic salinities, and net precipitation lowers those in the Pacific. Because the effects on upper-ocean physics are markedly different in the evaporating and precipitating regimes, the next phase of research in the Salinity Processes in the Upper-ocean Regional Study (SPURS) must address a high rainfall region. It seemed especially appropriate to focus on the eastern tropical Pacific that is freshened by the water vapor carried from the Atlantic. In a sense, the SPURS-2 Pacific region will be looking at the downstream fate of the freshwater carried out of the SPURS-1 North Atlantic region. Rainfall tends to lower surface density and thus inhibit vertical mixing, leading to quite different physical structure and dynamics in the upper ocean. Here, we discuss the motivations for the location of SPURS-2 and the scientific questions we hope to address.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2021-05-19
    Description: Global mean surface warming has stalled since the end of the twentieth century1,2, but the net radiation imbalance at the top of the atmosphere continues to suggest an increasingly warming planet. This apparent contradiction has been reconciled by an anomalous heat flux into the ocean3–8, induced by a shift towards a La Niña-like state with cold sea surface temperatures in the eastern tropical Pacific over the past decade or so. A significant portion of the heat missing fromthe atmosphere is therefore expected to be stored in the Pacific Ocean. However, in situ hydrographic records indicate that Pacific Ocean heat content has been decreasing9. Here, we analyse observations along with simulations from a global ocean–sea ice model to track the pathway of heat. We find that the enhanced heat uptake by the Pacific Ocean has been compensated by an increased heat transport from the Pacific Ocean to the Indian Ocean, carried by the Indonesian throughflow. As a result, Indian Ocean heat content has increased abruptly, which accounts for more than 70% of the global ocean heat gain in the upper 700m during the past decade. We conclude that the Indian Ocean has become increasingly important in modulating global climate variability.
    Description: PDF is Advanced Online copy 18 May 2015
    Description: Published
    Keywords: Attribution ; Indonesian throughflow ; ASFA_2015::H::Heat budget ; ASFA_2015::H::Heat transport ; ASFA_2015::V::Volume transport ; ASFA_2015::O::Ocean-atmosphere system
    Repository Name: AquaDocs
    Type: Journal Contribution , Refereed
    Format: pp.445-449
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-10-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Sprintall, J., Gordon, A. L., Wijffels, S. E., Feng, M., Hu, S., Koch-Larrouy, A., Phillips, H., Nugroho, D., Napitu, A., Pujiana, K., Susanto, R. D., Sloyan, B., Yuan, D., Riama, N. F., Siswanto, S., Kuswardani, A., Arifin, Z., Wahyudi, A. J., Zhou, H., Nagai, T., Ansong, J. K., Bourdalle-Badie, R., Chanuts, J., Lyard, F., Arbic, B. K., Ramdhani, A., & Setiawan, A. Detecting change in the Indonesian Seas. Frontiers in Marine Science, 6, (2019):257, doi:10.3389/fmars.2019.00257.
    Description: The Indonesian seas play a fundamental role in the coupled ocean and climate system with the Indonesian Throughflow (ITF) providing the only tropical pathway connecting the global oceans. Pacific warm pool waters passing through the Indonesian seas are cooled and freshened by strong air-sea fluxes and mixing from internal tides to form a unique water mass that can be tracked across the Indian Ocean basin and beyond. The Indonesian seas lie at the climatological center of the atmospheric deep convection associated with the ascending branch of the Walker Circulation. Regional SST variations cause changes in the surface winds that can shift the center of atmospheric deep convection, subsequently altering the precipitation and ocean circulation patterns within the entire Indo-Pacific region. Recent multi-decadal changes in the wind and buoyancy forcing over the tropical Indo-Pacific have directly affected the vertical profile, strength, and the heat and freshwater transports of the ITF. These changes influence the large-scale sea level, SST, precipitation and wind patterns. Observing long-term changes in mass, heat and freshwater within the Indonesian seas is central to understanding the variability and predictability of the global coupled climate system. Although substantial progress has been made over the past decade in measuring and modeling the physical and biogeochemical variability within the Indonesian seas, large uncertainties remain. A comprehensive strategy is needed for measuring the temporal and spatial scales of variability that govern the various water mass transport streams of the ITF, its connection with the circulation and heat and freshwater inventories and associated air-sea fluxes of the regional and global oceans. This white paper puts forward the design of an observational array using multi-platforms combined with high-resolution models aimed at increasing our quantitative understanding of water mass transformation rates and advection within the Indonesian seas and their impacts on the air-sea climate system. Introduction
    Description: JS acknowledges funding to support her effort by the National Science Foundation under Grant Number OCE-1736285 and NOAA’s Climate Program Office, Climate Variability and Predictability Program under Award Number NA17OAR4310257. SH was supported by the National Natural Science Foundation of China (Grant 41776018) and the Key Research Program of Frontier Sciences, CAS (QYZDB-SSW-SYS023). HP acknowledges support from the Australian Government’s National Environmental Science Programme. HZ acknowledges support from National Science Foundation under Grant No. 41876009. RS was supported by National Science Foundation Grant No. OCE-07-25935; Office of Naval Research Grant No. N00014-08-01-0618 and National Aeronautics and Space Administration Grant No. 80NSSC18K0777. SW, MF, and BS were supported by Center for Southern Hemisphere Oceans Research (CSHOR), which is a joint initiative between the Qingdao National Laboratory for Marine Science and Technology (QNLM), CSIRO, University of New South Wales and University of Tasmania.
    Keywords: Indonesian throughflow ; Observing system ; Intraseasonal ; ENSO ; Transport variability ; Planetary waves
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-05-26
    Description: Author Posting. © The Oceanography Society, 2016. This article is posted here by permission of The Oceanography Society for personal use, not for redistribution. The definitive version was published in Oceanography 29, no. 2 (2016): 82–91, doi:10.5670/oceanog.2016.41.
    Description: The upper 200 m of the two northern Indian Ocean embayments, the Bay of Bengal (BoB) and the Arabian Sea (AS), differ sharply in their salinity stratification, as the Asian monsoon injects massive amounts of freshwater into the BoB while removing freshwater via evaporation from the AS. The ocean circulation transfers salt from the AS to the BoB and exports freshwater from the BoB to mitigate the salinity difference and reach a quasi-steady state, albeit with strong seasonality. An energetic field of mesoscale features and an intrathermocline eddy was observed within the BoB during the R/V Revelle November and December 2013 Air-Sea Interactions Regional Initiative cruises, marking the early northeast monsoon phase. Mesoscale features, which display a surprisingly large thermohaline range within their confines, obscure the regional surface water and thermohaline stratification patterns, as observed by satellite and Argo profilers. Ocean processes blend the fresh and salty features along and across density surfaces, influencing sea surface temperature and air-sea flux. Comparing the Revelle observations to the Argo data reveals a general westward migration of mesoscale features across the BoB.
    Description: Support for Bay of Bengal research is provided by the Office of Naval Research. ALG award number N00014-14-10065. AM and MF award number N00014-13-10451 and for MF a WHOI summer student fellowship. ES award number N00014-14-10236.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-05-26
    Description: Author Posting. © The Oceanography Society, 2017. This article is posted here by permission of The Oceanography Society for personal use, not for redistribution. The definitive version was published in Oceanography 30, no. 2 (2017): 74–87, doi:10.5670/oceanog.2017.224.
    Description: The Arabian Sea circulation is forced by strong monsoonal winds and is characterized by vigorous seasonally reversing currents, extreme differences in sea surface salinity, localized substantial upwelling, and widespread submesoscale thermohaline structures. Its complicated sea surface temperature patterns are important for the onset and evolution of the Asian monsoon. This article describes a program that aims to elucidate the role of upper-ocean processes and atmospheric feedbacks in setting the sea surface temperature properties of the region. The wide range of spatial and temporal scales and the difficulty of accessing much of the region with ships due to piracy motivated a novel approach based on state-of-the-art autonomous ocean sensors and platforms. The extensive data set that is being collected, combined with numerical models and remote sensing data, confirms the role of planetary waves in the reversal of the Somali Current system. These data also document the fast response of the upper equatorial ocean to monsoon winds through changes in temperature and salinity and the connectivity of the surface currents across the northern Indian Ocean. New observations of thermohaline interleaving structures and mixing in setting the surface temperature properties of the northern Arabian Sea are also discussed.
    Description: The authors were funded through NASCar DRI grants. Additional support from the Global Drifter Program, grant NA15OAR4320071 (LC, VH); the CSL Laboratory at the NCAR CISL (Yellowstone ark:/85065/d7wd3xhc) (JMC); and the Department of Energy ACME project DE-SC0012778 (JMC) are gratefully acknowledged.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2016. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Bulletin of the American Meteorological Society 97 (2016): 1859–1884, doi:10.1175/BAMS-D-14-00197.1.
    Description: Air–Sea Interactions in the Northern Indian Ocean (ASIRI) is an international research effort (2013–17) aimed at understanding and quantifying coupled atmosphere–ocean dynamics of the Bay of Bengal (BoB) with relevance to Indian Ocean monsoons. Working collaboratively, more than 20 research institutions are acquiring field observations coupled with operational and high-resolution models to address scientific issues that have stymied the monsoon predictability. ASIRI combines new and mature observational technologies to resolve submesoscale to regional-scale currents and hydrophysical fields. These data reveal BoB’s sharp frontal features, submesoscale variability, low-salinity lenses and filaments, and shallow mixed layers, with relatively weak turbulent mixing. Observed physical features include energetic high-frequency internal waves in the southern BoB, energetic mesoscale and submesoscale features including an intrathermocline eddy in the central BoB, and a high-resolution view of the exchange along the periphery of Sri Lanka, which includes the 100-km-wide East India Coastal Current (EICC) carrying low-salinity water out of the BoB and an adjacent, broad northward flow (∼300 km wide) that carries high-salinity water into BoB during the northeast monsoon. Atmospheric boundary layer (ABL) observations during the decaying phase of the Madden–Julian oscillation (MJO) permit the study of multiscale atmospheric processes associated with non-MJO phenomena and their impacts on the marine boundary layer. Underway analyses that integrate observations and numerical simulations shed light on how air–sea interactions control the ABL and upper-ocean processes.
    Description: This work was sponsored by the U.S. Office of Naval Research (ONR) in an ONR Departmental Research Initiative (DRI), Air–Sea Interactions in Northern Indian Ocean (ASIRI), and in a Naval Research Laboratory project, Effects of Bay of Bengal Freshwater Flux on Indian Ocean Monsoon (EBOB). ASIRI–RAWI was funded under the NASCar DRI of the ONR. The Indian component of the program, Ocean Mixing and Monsoons (OMM), was supported by the Ministry of Earth Sciences of India.
    Description: 2017-04-22
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...