GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2015-2019  (5)
  • 1
    Keywords: Seeschifffahrt ; Ballastwasser
    Type of Medium: Book
    Pages: XV, 306 S. , Ill., graph. Darst., Kt.
    ISBN: 9789401793667 , 9789402408034
    Series Statement: Invading nature : Springer series in invasion ecology 8
    RVK:
    RVK:
    Language: English
    Note: Literaturangaben
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-03-01
    Description: Highlights: • Monitoring of non-indigenous and cryptogenic species/populations needs to be initiated. • Monitoring should focus on bridgehead sites and dispersal hubs. • Monitoring methods should be internationally harmonized. • Rapid assessments of particular species may provide timely but limited information. • Monitoring data should be assembled in open access continually updated databases. Abstract: Non-indigenous species (NIS) are recognized as a global threat to biodiversity and monitoring their presence and impacts is considered a prerequisite for marine environmental management and sustainable development. However, monitoring for NIS seldom takes place except for a few baseline surveys. With the goal of serving the requirements of the EU Marine Strategy Framework Directive and the EU Regulation on the prevention and management of the introduction and spread of invasive alien species, the paper highlights the importance of early detection of NIS in dispersal hubs for a rapid management response, and of long-term monitoring for tracking the effects of NIS within recipient ecosystems, including coastal systems especially vulnerable to introductions. The conceptual framework also demonstrates the need for port monitoring, which should serve the above mentioned requirements but also provide the required information for implementation of the International Convention for the Control and Management of Ships Ballast Water and Sediments. Large scale monitoring of native, cryptogenic and NIS in natural and man-made habitats will collectively lead to meeting international requirements. Cost-efficient rapid assessments of target species may provide timely information for managers and policy-advisers focusing on particular NIS at particular localities, but this cannot replace long-term monitoring. To support legislative requirements, collected data should be verified and stored in a publicly accessible and routinely updated database/information system. Public involvement should be encouraged as part of monitoring programs where feasible.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-02-01
    Description: Several legal and administrative instruments aimed to reduce the spread of non-indigenous species, that may pose harm to the environment, economy and/or human health, were developed in recent years at international and national levels, such as the International Convention for the Control and Management of Ship's Ballast Water and Sediments, the International Council for the Exploration of the Sea Code of Practice on the Introductions and Transfers of Marine Organisms, the EU Regulation on Invasive Alien Species and the Marine Strategy Framework Directive, the US Invasive Species Act, the Biosecurity Act of New Zealand, etc. The effectiveness of these instruments can only be measured by successes in the prevention of new introductions. We propose an indicator, the arrival of new non-indigenous species (nNIS), which helps to assess introduction rates, especially in relation to pathways and vectors of introduction, and is aimed to support management. The technical precondition for the calculation of nNIS is the availability of a global, continuously updated and verified source of information on aquatic non-indigenous species. Such a database is needed, because the indicator should be calculated at different geographical scales: (1) for a particular area, such as port or coast of a country within a Large Marine Ecosystem (LME); (2) for a whole LME; and (3) for a larger biogeographical region, including two or more neighboring LMEs. The geographical scale of nNIS helps to distinguish between a primary introduction and secondary spread, which may involve different pathways and vectors. This, in turn, determines the availability of management options, because it is more feasible to prevent a primary introduction than to stop subsequent secondary spread. The definition of environmental target, size of assessment unit and possible limitations of the indicator are also discussed.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-10-17
    Description: The most effective way to manage species transfers is to prevent their introduction via vector regulation. Soon, international ships will be required to meet numeric ballast discharge standards using ballast water treatment (BWT) systems, and ballast water exchange (BWE), currently required by several countries, will be phased out. However, there are concerns that BWT systems may not function reliably in fresh and/or turbid water. A land-based evaluation of simulated ‘BWE plus BWT’ versus ‘BWT alone’ demonstrated potential benefits of combining BWE with BWT for protection of freshwater ecosystems. We conducted ship-based testing to compare the efficacy of ‘BWE plus BWT’ versus ‘BWT alone’ on voyages starting with freshwater ballast. We tested the hypotheses that there is an additional effect of ‘BWE plus BWT’ compared to ‘BWT alone’ on the reduction of plankton, and that taxa remaining after ‘BWE plus BWT’ will be marine (low risk for establishment at freshwater recipient ports). Our study found that BWE has significant additional effect on the reduction of plankton, and this effect increases with initial abundance. As per expectations, ‘BWT alone’ tanks contained higher risk freshwater or euryhaline taxa at discharge, while ‘BWE plus BWT’ tanks contained mostly lower risk marine taxa unlikely to survive in recipient freshwater ecosystems.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-04-06
    Description: Ballast water treatment is required for vessels to prevent the introduction of potentially invasive neobiota. Some treatment methods use chemical disinfectants which produce a variety of halogenated compounds as disinfection by-products (DBPs). One of the most abundant DBP from oxidative ballast water treatment is bromoform (CHBr3) where we find an average concentration of 894±560nmolL-1 (226±142μgL-1) in the undiluted ballast water from measurements and literature. Bromoform is a relevant gas for atmospheric chemistry and ozone depletion, especially in the tropics where entrainment into the stratosphere is possible. The spread of DBPs in the tropics over months to years is assessed here for the first time. With Lagrangian trajectories based on the NEMO-ORCA12 model velocity field, we simulate DBP spread in the sea surface and try to quantify the oceanic bromoform concentration and emission to the atmosphere from ballast water discharge at major harbours in the tropical region of Southeast Asia. The exemplary simulations of two important regions, Singapore and the Pearl River Delta, reveal major transport pathways of the DBPs and the anthropogenic bromoform concentrations in the sea surface. Based on our simulations, we expect DBPs to spread into the open ocean, along the coast and also an advection with monsoon-driven currents into the North Pacific and Indian Ocean. Furthermore, anthropogenic bromoform concentrations and emissions are predicted to increase locally around large harbours. In the sea surface around Singapore we estimate an increase in bromoform concentration by 9% compared to recent measurement. In a moderate scenario where 70% of the ballast water is chemically treated bromoform emissions to the atmosphere can locally exceed 1000pmolm-2h-1 and double climatological emissions. In the Pearl River Delta all bromoform is directly outgassed which leads to an additional bromine (Br) input into the atmosphere of 495kmolBr (∼42tCHBr3) a-1. From Singapore ports the additional atmospheric Br input is calculated as 312kmolBr (∼26tCHBr3) a-1. We estimate the global anthropogenic Br input from ballast water into the atmosphere of up to 13Mmola-1. This is 0.1% global Br input from background bromoform emissions and thus probably not relevant for stratospheric ozone depletion.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...