GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2015-2019  (27)
  • 1
    Keywords: Hochschulschrift
    Type of Medium: Online Resource
    Pages: Online-Ressource (PDF-Datei: 123 S., 24 MB)
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-03-19
    Description: It is a longstanding observation that the frequency of volcanism periodically changes at times of global climate change. The existence of causal links between volcanism and Earth's climate remains highly controversial, partly because most related studies only cover one glacial cycle. Longer records are available from marine sediment profiles in which the distribution of tephras records frequency changes of explosive arc volcanism with high resolution and time precision. Here we show that tephras of IODP Hole U1437B (northwest Pacific) record a cyclicity of explosive volcanism within the last 1.1 Myr. A spectral analysis of the dataset yields a statistically significant spectral peak at the similar to 100 kyr period, which dominates the global climate cycles since the Middle Pleistocene. A time-domain analysis of the entire eruption and delta O-18 record of benthic foraminifera as climate/sea level proxy shows that volcanism peaks after the glacial maximum and similar to 13 +/- 2 kyr before the delta O-18 minimum right at the glacial/interglacial transition. The correlation is especially good for the last 0.7 Myr. For the period 0.7-1.1 Ma, during the Middle Pleistocene Transition (MPT), the correlation is weaker, since the 100 kyr periodicity in the delta O-18 record diminishes, while the tephra record maintains its strong 100 kyr periodicity.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-02-01
    Description: Highlights • Individual evolution of temporal and spatial co-existing magma suites • Determination of pre-eruptive magma chamber conditions of the Cão Grande Formation magma chambers • Cão Grande Formation phonolite magmas typically reach H2O-saturation prior to the eruption. Abstract The Cão Grande Formation (CGF) on the western plateau of Santo Antão is a sequence of four phonolitic tephras (Canudo Tephra, Cão Grande I Tephra, Cão Grande II Tephra and Furninha Tephra) produced by highly explosive eruptions that alternatingly originated from a basanitic - phonolitic and a nephelinitic - phonolitic magmatic system. Detailed stratigraphy and petrological investigations of each unit are used to demonstrate the unusual situation that two distinct highly evolved magmas differentiated contemporaneously in separate magmatic systems. Chemical thermobarometry suggests that both magmatic systems not only temporally co-existed, but also that their magma chambers resided close to each other at 7 to 16 km depth, beneath the western plateau of Santo Antão. However, the distinct melt and magma compositions indicate that both systems evolved independently. The only interaction between both magmatic systems was an injection of magma from the nephelinitic - phonolitic magmatic system into the Cão Grande II Tephra (CG II) phonolitic reservoir, which is associated to the basanitic - phonolitic magmatic system. Compositional zonations in the tephra deposits indicate that the eruptions of the CGF tapped stratified magma reservoirs that mainly resulted from crystal accumulation generating downward increasing magma density. However, the CG II tephras also show a significant gradient in melt (glass) compositions. Magmas of the Canudo Tephra (CT) and the Cão Grande I Tephra (CG I) were H2O-saturated and their eruptions were probably triggered by fluid overpressure in the magma chamber. On the other hand, the CG II magma was H2O-undersaturated; we therefore assume that the injection of the hot nephelinitic - phonolitic magma system-type melt/magma triggered the eruption. The zoned deposit of the Furninha Tephra (FT) indicates mafic magma replenishment into a phonolitic reservoir directly prior to the eruption, thus providing a probable triggering mechanism. The new magma chamber models and thermobarometric results for the four CGF units provide constraints for hazard assessments, because similar events may occur in the future considering the longevity of the CGF magma systems.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-10-24
    Description: Drilling at Integrated Ocean Drilling Program Site U1381 on the Cocos Ridge offshore Costa Rica recovered 67 primary Miocene (ca. 8 Ma to ca. 16.5 Ma) marine fallout ash layers. Geochemical, volcanological, and geological criteria link these ashes to Plinian eruptions that carried ash to at least 50–450 km from the Galápagos hotspot. These ash layers are the first documentation of highly explosive Miocene Galápagos hotspot volcanism. This volcanism is bimodal with two-thirds of the tephra layers generated by basaltic magmas (glass compositions 〈57 wt% SiO2) and one-third by rhyolitic magmas. The temporal distribution of the tephra layers, inferred from sediment accumulation rates calibrated by 40Ar/39Ar and biostratigraphic ages, reveals a distinct increase in eruption frequency and hence increased volcanic activity of the Galápagos hotspot after 14 Ma which we interpret in the context of dynamic interaction between the Galápagos plume and spreading ridge.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-09-23
    Description: Drill cores recovered during several ODP and IODP Expeditions offshore Central America contain an extensive Early Cenozoic ash layer record. These ash layers have been deposited by plinian eruptions that originated either at the Central American Volcanic Arc (CAVA) or at the Galápagos Hot Spot. While plinian eruptions are well known from the CAVA, volcanism from the Galápagos region is dominantly recorded in effusive and strombolian deposits from subaerial and submarine eruptions although rare large explosive eruptions of evolved trachytic or dacitic compositions did occur in the Pleistocene (e.g., Geist et al., 1994).We have established a tephrostratigraphy from recent through Miocene times from the unique archive of ODP/IODP sites offhore Central America in which we identify tephra source regions by geochemical compositions of the glass shards. Thus we found numerous CAVA-derived tephra layers characterized by typical arc signatures (e.g., Nb-Ta troughs, LILE enrichments), but more surprisingly also an extensive record of tephra layers mostly of Miocene age featuring ocean island geochemical compositions (e.g., low La/Nb and Ba/La ratios, high Nb/Rb ratios). At this geographical setting the only plausible source for these layers is the Galápagos archipelago. Such Miocene ash layers occur in the cores of ODP Sites 1039, 1241, and 1242. At IODP Site U1381, on the Cocos Ridge offshore Costa Rica, 67 primary Miocene (~8 Ma to ~16.5 Ma) fallout ash layers have been recovered. Inferred transport distances of at least 50to 450 km from their vents imply Plinian eruptions, although two-thirds of the ash beds formed from basaltic magmas and only one-third from rhyolitic magmas that are typically associated with plinian eruptions. Our age model for Site U1381 based on sediment accumulation rates, 40Ar/39Ar dating and biostratigraphic ages, reveals a distinct increase in eruption frequency at around 14 Ma. We interpret this as an increase in magma production rates due to changes in interactions between Galápagos plume and spreading ridge.
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-02-01
    Description: We studied the tephra inventory of 18 deep sea drill sites from six DSDP/ODP legs (Legs 84, 138, 170, 202, 205, 206) and two IODP legs (Legs 334 and 344) offshore the southern Central American Volcanic Arc (CAVA). Eight drill sites are located on the incoming Cocos plate and ten drill sites on the continental slope of the Caribbean plate. In total we examined ∼840 ash-bearing horizons and identified ∼650 of these as primary ash beds of which 430 originated from the CAVA. Correlations of ash beds were established between marine cores and with terrestrial tephra deposits, using major and trace element glass compositions with respect to relative stratigraphic order. As a prerequisite for marine-terrestrial correlations we present a new geochemical data set for significant Neogene and Quaternary Costa Rican tephras. Moreover, new Ar/Ar ages for marine tephras have been determined and marine ash beds are also dated using the pelagic sedimentation rates. The resulting correlations and provenance analyses build a tephrochronostratigraphic framework for Costa Rica and Nicaragua that covers the last 〉8 Myr. We define 39 correlations of marine ash beds to specific tephra formations in Costa Rica and Nicaragua; from the 4.15 Ma Lower Sandillal Ignimbrite to the 3.5 ka Rincón de la Vieja Tephra from Costa Rica, as well as another 32 widely distributed tephra layers for which their specific region of origin along Costa Rica and Nicaragua can be constrained.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-09-23
    Description: Highlights • Subplinian to Plinian eruptions from Cocos Island • Tectonically controlled melt ascent • Ocean island evolution without passing typical growth stages Abstract We report a series of fourteen marine tephra layers that are the products of large explosive eruptions of Subplinian to Plinian intensities and magnitudes (VEI 〉 4) from Cocos Island, Costa Rica. Cocos Island is a volcanic island in the eastern Central Pacific Ocean ~ 500 km offshore Costa Rica, and is situated on the northwestern flank of the aseismic Cocos Ridge. Geochemical fingerprinting of Pleistocene (~ 2.4–1.4 Ma) marine tephra layers from Ocean Drilling Project (ODP) Leg 202 Site 1241 using major and trace element compositions of volcanic glass shards demonstrates unequivocally their origin from Cocos Island rather than the Galápagos Archipelago or the Central American Volcanic Arc (CAVA). Cocos Island and the adjacent seamounts of the Cocos Island Province have alkalic compositions and formed on young (≤ 3 Ma) oceanic crust from an extinct spreading ridge bounded by a transform fault against the older and thicker crust of the aseismic Cocos Ridge. Cocos Island has six times the average volume of the adjacent seamounts although all appear to have formed during the 3–1.4 Ma time period. Cocos Island lies closest to the transform fault and we explain its excessive growth by melts rising from garnet-bearing mantle being deflected from the thick Cocos Ridge lithosphere toward the thinner lithosphere on the other side of the transform, thus enlarging the melt catchment area for Cocos Island compared to the seamounts farther away from the transform. This special setting favored growth above sea level and subaerial explosive eruptions even though the absence of appropriate compositions suggests that the entirely alkalic Cocos Island (and seamounts) never evolved through the productive tholeiitic shield stage typical of other Pacific Ocean islands, possibly because melt production rates remained too small. Conditions of magma generation and ascent resembled Hawaiian pre-shield volcanoes but persisted for much longer (〈 1 m.y.) and formed evolved, trachytic magmas. Therefore Cocos Island may be a unique example for a volcanic ocean island that did not pass through the typical growth stages.
    Type: Article , PeerReviewed
    Format: other
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-02-01
    Description: Pacific drill sites offshore Central America provide the unique opportunity to study the evolution of large explosive volcanism and the geotectonic evolution of the continental margin back into the Neogene. The temporal distribution of tephra layers established by tephrochonostratigraphy in Part 1 indicates a nearly continuous highly explosive eruption record for the Costa Rican and the Nicaraguan volcanic arc within the last 8 M.y. The widely distributed marine tephra layers comprise the major fraction of the respective erupted tephra volumes and masses thus providing insights into regional and temporal variations of large-magnitude explosive eruptions along the southern Central American Volcanic Arc (CAVA). We observe three pulses of enhanced explosive magmatism between 0-1 Ma at the Cordillera Central, between 1-2 Ma at the Guanacaste and at 〉3 Ma at the Western Nicaragua segments. Averaged over the long-term the minimum erupted magma flux (per unit arc length) is ∼0.017 g/ms. Tephra ages, constrained by Ar-Ar dating and by correlation with dated terrestrial tephras, yield time-variable accumulation rates of the intercalated pelagic sediments with four prominent phases of peak sedimentation rates that relate to tectonic processes of subduction erosion. The peak rate at 〉2.3 Ma near Osa particularly relates to initial Cocos Ridge subduction which began at 2.91±0.23 Ma as inferred by the 1.5 M.y. delayed appearance of the OIB geochemical signal in tephras from Barva volcano at 1.42 Ma. Subsequent tectonic re-arrangements probably involved crustal extension on the Guanacaste segment that favored the 2-1 Ma period of unusually massive rhyolite production.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    GEOMAR
    In:  GEOMAR, Kiel, Germany, 18 pp.
    Publication Date: 2019-06-28
    Description: Dates, Ports: 09.05.2017 (Heraklion, Crete) – 24.05.2017 (Heraklion, Crete) Research subject: Tephrostratigraphy along the Aegean arc Chief Scientist: Dr. Armin Freundt, GEOMAR, Kiel Number of Scientists: 11 Project: Aegean Tephras
    Type: Report , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    GEOMAR
    In:  GEOMAR, Kiel, Germany, 11 pp.
    Publication Date: 2019-06-26
    Description: R.V. Poseidon cruise no. 522 Dates, Ports: 10.04.2018 (Catania, Italy) – 29.04.2018 (Malaga, Spain) Research subject: Tephrostratigraphy of tsunami-related deposits at Stromboli Chief Scientist: Dr. Armin Freundt, GEOMAR, Kiel Number of Scientists: 11 Project: Stromboli tsunamis
    Type: Report , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...