GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Publikationsdatum: 2022-05-25
    Beschreibung: © The Author(s), 2015. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in The Cryosphere 9 (2015): 2009-2025, doi:10.5194/tc-9-2009-2015.
    Beschreibung: Observed changes in the surface elevation of the Greenland Ice Sheet are caused by ice dynamics, basal elevation change, basal melt, surface mass balance (SMB) variability, and by compaction of the overlying firn. The last two contributions are quantified here using a firn model that includes compaction, meltwater percolation, and refreezing. The model is forced with surface mass fluxes and temperature from a regional climate model for the period 1960–2014. The model results agree with observations of surface density, density profiles from 62 firn cores, and altimetric observations from regions where ice-dynamical surface height changes are likely small. In areas with strong surface melt, the firn model overestimates density. We find that the firn layer in the high interior is generally thickening slowly (1–5 cm yr−1). In the percolation and ablation areas, firn and SMB processes account for a surface elevation lowering of up to 20–50 cm yr−1. Most of this firn-induced marginal thinning is caused by an increase in melt since the mid-1990s and partly compensated by an increase in the accumulation of fresh snow around most of the ice sheet. The total firn and ice volume change between 1980 and 2014 is estimated at −3295 ± 1030 km3 due to firn and SMB changes, corresponding to an ice-sheet average thinning of 1.96 ± 0.61 m. Most of this volume decrease occurred after 1995. The computed changes in surface elevation can be used to partition altimetrically observed volume change into surface mass balance and ice-dynamically related mass changes.
    Beschreibung: P. Kuipers Munneke received financial support from the Netherlands Polar Programme (NPP) of the Netherlands Institute for Scientific Research (NWO). ECMWF at Reading (UK) is acknowledged for use of the Cray supercomputing system. The J. E. Box contribution is supported by Det Frie Forskningsråd grant 4002-00234 and Geocenter Denmark.
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2022-05-25
    Beschreibung: Author Posting. © American Geophysical Union, 2015. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 42 (2015): 9311–9318, doi:10.1002/2015GL065778.
    Beschreibung: This study represents the first comprehensive noble gas study in glacial meltwater from the Greenland Ice Sheet. It shows that most samples are in disequilibrium with surface collection conditions. A preliminary Ne and Xe analysis suggests that about half of the samples equilibrated at a temperature of ~0°C and altitudes between 1000 m and 2000 m, with a few samples pointing to lower equilibration altitudes and temperatures between 2°C and 5°C. Two samples suggest an origin as melted ice and complete lack of equilibration with surface conditions. A helium component analysis suggests that this glacial meltwater was isolated from the atmosphere prior to the 1950s, with most samples yielding residence times ≤ 420 years. Most samples represent a mixture between a dominant atmospheric component originating as precipitation and basal meltwater or groundwater, which has accumulated crustal 4He over time.
    Beschreibung: University of Michigan; Packard Foundation; Department of Earth and Environmental Sciences Turner fellowship
    Beschreibung: 2016-05-06
    Schlagwort(e): Noble gases ; Greenland ; Glacial meltwater ; Water residence times
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2022-05-25
    Beschreibung: © The Author(s), 2017. This is the author's version of the work. It is posted here under a nonexclusive, irrevocable, paid-up, worldwide license granted to WHOI. It is made available for personal use, not for redistribution. The definitive version was published in Geochimica et Cosmochimica Acta 213 (2017): 237-254, doi:10.1016/j.gca.2017.06.002.
    Beschreibung: In this study, we present the first measurements of iron (Fe) stable isotopic composition (δ56Fe) of subglacial streams draining the Greenland Ice Sheet (GIS). We measure the δ56Fe values [(δ56Fe, ‰ = (56Fe/54Fe)sample/(56Fe/54Fe)standard-1) x 103] of both dissolved and suspended sediment Fe in subglacial outflows from five distinct land-terminating glaciers. Suspended sediments have δ56Fe values that lie within the crustal array (δ56Fe ~0‰). In contrast, the δ56Fe values of dissolved Fe in subglacial outflows are consistently less than 0‰, reaching a minimum of -2.1‰ in the outflow from the Russell Glacier. The δ56Fe values of dissolved Fe vary geographically and on daily time scales. Major element chemistry and mineral saturation state modeling suggest that incongruent silicate weathering and sulphide oxidation are the likely drivers of subglacial stream Fe chemistry, and that the extent of chemical weathering influences the δ56Fe of dissolved Fe. The largest difference in δ56Fe between dissolved and suspended load is -2.1‰, and occurs in the subglacial system from the Russell glacier (southwest GIS). Major element chemistry indicates this outflow to be the least chemically weathered, while more mature subglacial systems (i.e., that exhibit greater extents of subglacial weathering) have dissolved loads with δ56Fe that are indistinguishable from suspended sediments (Δ56Fesuspended-dissolved ~0‰). Ultimately, the dissolved Fe generated in some subglacial systems from the GIS is a previously unrecognized source of isotopically light Fe into the hydrosphere. The data illustrate that the dissolved Fe supplied by subglacial weathering can have variable δ56Fe values depending on the degree of chemical weathering. Thus, Fe isotopes have potential as a proxy for subglacial chemical weathering intensity or mode. Finally, based on our regional Fe concentration measurements from each glacial outflow, we estimate a flux weighted continental scale dissolved iron export of 2.1 Gg Fe yr-1 to the coastal ocean, which is within the range of previous estimates.
    Beschreibung: The Turner Postdoctoral Fellowship award to E.I.S. and the Packard Foundation Fellowship award to S.M.A funded this project. Iron isotope analytical work at Penn State was supported by NSF award EAR-0959092 to M.S.F.. Field work at the SQS site was further supported by the Woods Hole Oceanographic Institution’s Ocean and Climate Change Institute Arctic Research Initiative research grant to S.B.D.
    Repository-Name: Woods Hole Open Access Server
    Materialart: Preprint
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Publikationsdatum: 2022-05-25
    Beschreibung: Author Posting. © American Geophysical Union, 2018. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Earth Surface 123 (2018): 2258-2278, doi:10.1029/2017JF004581.
    Beschreibung: We use a numerical subglacial hydrology model and remotely sensed observations of Greenland Ice Sheet surface motion to test whether the inverse relationship between effective pressure and regional melt season surface speeds observed at individual sites holds on a regional scale. The model is forced with daily surface runoff estimates for 2009 and 2010 across an ~8,000‐km2 region on the western margin. The overall subglacial drainage system morphology develops similarly in both years, with subglacial channel networks growing inland from the ice sheet margin and robust subglacial pathways forming over bedrock ridges. Modeled effective pressures are compared to contemporaneous regional surface speeds derived from TerraSAR‐X imagery to investigate spatial relationships. Our results show an inverse spatial relationship between effective pressure and ice speed in the mid‐melt season, when surface speeds are elevated, indicating that effective pressure is the dominant control on surface velocities in the mid‐melt season. By contrast, in the early and late melt seasons, when surface speeds are slower, effective pressure and surface speed have a positive relationship. Our results suggest that outside of the mid‐melt season, the influence of effective pressures on sliding speeds may be secondary to the influence of driving stress and spatially variable bed roughness.
    Beschreibung: National Aeronautics and Space Administration (NASA). Grant Number: NXX10AI30G National Science Foundation (NSF) American Geophysical Union Horton Research Grant; National Science Foundation Graduate Research Fellowship; National Science Foundation's Office of Polar Programs (NSF‐OPP) Grant Numbers: PLR‐1418256, ARC‐1023364, ARC‐0520077; Woods Hole Oceanographic Institution's Ocean and Climate Change Institute (OCCI)
    Beschreibung: 2019-03-27
    Schlagwort(e): Glaciology ; Greenland ; Subglacial hydrology ; Numerical modeling ; Ice dynamics
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Publikationsdatum: 2022-05-25
    Beschreibung: Author Posting. © American Geophysical Union, 2018. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 45 (2018): 11,187-11,196, doi:10.1029/2018GL079665.
    Beschreibung: Continuous seismic observations across the Ross Ice Shelf reveal ubiquitous ambient resonances at frequencies 〉5 Hz. These firn‐trapped surface wave signals arise through wind and snow bedform interactions coupled with very low velocity structures. Progressive and long‐term spectral changes are associated with surface snow redistribution by wind and with a January 2016 regional melt event. Modeling demonstrates high spectral sensitivity to near‐surface (top several meters) elastic parameters. We propose that spectral peak changes arise from surface snow redistribution in wind events and to velocity drops reflecting snow lattice weakening near 0°C for the melt event. Percolation‐related refrozen layers and layer thinning may also contribute to long‐term spectral changes after the melt event. Single‐station observations are inverted for elastic structure for multiple stations across the ice shelf. High‐frequency ambient noise seismology presents opportunities for continuous assessment of near‐surface ice shelf or other firn environments.
    Beschreibung: NSF Office of Polar Programs Grant Number: PLR-1142518
    Beschreibung: 2019-04-16
    Schlagwort(e): Ross Ice Shelf ; Antarctica ; Firn ; Ambient noise ; Temporal monitoring ; Resonances
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    facet.materialart.
    Unbekannt
    Copernicus Publications on behalf of the European Geosciences Union
    Publikationsdatum: 2022-05-25
    Beschreibung: © The Author(s), 2017. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Cryosphere 11 (2017): 2439-2462, doi:10.5194/tc-11-2439-2017.
    Beschreibung: Methanesulfonic acid (MSA; CH3SO3H) in polar ice is a unique proxy of marine primary productivity, synoptic atmospheric transport, and regional sea-ice behavior. However, MSA can be mobile within the firn and ice matrix, a post-depositional process that is well known but poorly understood and documented, leading to uncertainties in the integrity of the MSA paleoclimatic signal. Here, we use a compilation of 22 ice core MSA records from Greenland and Antarctica and a model of soluble impurity transport in order to comprehensively investigate the vertical migration of MSA from summer layers, where MSA is originally deposited, to adjacent winter layers in polar ice. We find that the shallowest depth of MSA migration in our compilation varies over a wide range (∼ 2 to 400 m) and is positively correlated with snow accumulation rate and negatively correlated with ice concentration of Na+ (typically the most abundant marine cation). Although the considered soluble impurity transport model provides a useful mechanistic framework for studying MSA migration, it remains limited by inadequate constraints on key physico-chemical parameters – most notably, the diffusion coefficient of MSA in cold ice (DMS). We derive a simplified version of the model, which includes DMS as the sole parameter, in order to illuminate aspects of the migration process. Using this model, we show that the progressive phase alignment of MSA and Na+ concentration peaks observed along a high-resolution West Antarctic core is most consistent with 10−12 m2 s−1 〈 DMS 〈 10−11 m2 s−1, which is 1 order of magnitude greater than the DMS values previously estimated from laboratory studies. More generally, our data synthesis and model results suggest that (i) MSA migration may be fairly ubiquitous, particularly at coastal and (or) high-accumulation regions across Greenland and Antarctica; and (ii) can significantly change annual and multiyear MSA concentration averages. Thus, in most cases, caution should be exercised when interpreting polar ice core MSA records, although records that have undergone severe migration could still be useful for inferring decadal and lower-frequency climate variability.
    Beschreibung: Matthew Osman acknowledges government support awarded by DoD, Air Force Office of Scientific Research, National Defense Science and Engineering Graduate (NDSEG) Fellowship, 32 CFR 168a. This work was supported by the US NSF (ANT-0632031 and PLR-1205196 to Sarah B. Das, and NSF-MRI-1126217 to Matthew J. Evans) and a Woods Hole Oceanographic Institution Interdisciplinary Research award to Sarah B. Das and Olivier Marchal.
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    Publikationsdatum: 2022-05-25
    Beschreibung: Author Posting. © American Geophysical Union, 2015. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Earth Surface 120 (2015): 1082–1106, doi:10.1002/2014JF003398.
    Beschreibung: We analyzed geophone and GPS measurements collected within the ablation zone of the western Greenland Ice Sheet during a ~35 day period of the 2011 melt season to study changes in ice deformation before, during, and after a supraglacial lake drainage event. During rapid lake drainage, ice flow speeds increased to ~400% of winter values, and icequake activity peaked. At times 〉7 days after drainage, this seismicity developed variability over both diurnal and longer periods (~10 days), while coincident ice speeds fell to ~150% of winter values and showed nightly peaks in spatial variability. Approximately 95% of all detected seismicity in the lake basin and its immediate vicinity was triggered by fracture propagation within near-surface ice (〈330 m deep) that generated Rayleigh waves. Icequakes occurring before and during drainage frequently were collocated with the down flow (west) end of the primary hydrofracture through which the lake drained but shifted farther west and outside the lake basin after the drainage. We interpret these results to reveal vertical hydrofracture opening and local uplift during the drainage, followed by enhanced seismicity and ice flow on the downstream side of the lake basin. This region collocates with interferometric synthetic aperture radar-measured speedup in previous years and could reflect the migration path of the meltwater supplied to the bed by the lake. The diurnal seismic signal can be associated with nightly reductions in surface melt input that increase effective basal pressure and traction, thereby promoting elevated strain in the surficial ice.
    Beschreibung: Research by J. Carmichael was supported by a NASA NESSF Fellowship grant NNX08AU82H and NSF grant ANT-0424589. The fieldwork and additional analyses were supported by the National Science Foundation's Office of Polar Programs (NSF-OPP) through ARC-1023382, awarded to I. Joughin, and ARC-1023364, awarded to S. B. Das and M. D. Behn. Matt King is a recipient of an Australian Research Council Future Fellowship (project number FT110100207).
    Beschreibung: 2015-12-25
    Schlagwort(e): Western Greenland Ice Sheet ; Icequakes ; Statistical signal processing ; GPS ; Supraglacial lakes ; Seismic threshold monitoring
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Format: application/pdf
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    Publikationsdatum: 2022-10-26
    Beschreibung: Author Posting. © American Geophysical Union, 2018. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in in Geophysical Research Letters, 45(22), (2018): 12350-12358. doi: 10.1029/2018GL080763.
    Beschreibung: Recent acceleration of Greenland's ocean‐terminating glaciers has substantially amplified the ice sheet's contribution to global sea level. Increased oceanic melting of these tidewater glaciers is widely cited as the likely trigger, and is thought to be highest within vigorous plumes driven by freshwater drainage from beneath glaciers. Yet melting of the larger part of calving fronts outside of plumes remains largely unstudied. Here we combine ocean observations collected within 100 m of a tidewater glacier with a numerical model to show that unlike previously assumed, plumes drive an energetic fjord‐wide circulation which enhances melting along the entire calving front. Compared to estimates of melting within plumes alone, this fjord‐wide circulation effectively doubles the glacier‐wide melt rate, and through shaping the calving front has a potential dynamic impact on calving. Our results suggest that melting driven by fjord‐scale circulation should be considered in process‐based projections of Greenland's sea level contribution.
    Beschreibung: Support was provided by the National Science Foundation (NSF) through PLR‐1418256 and PLR‐1744835, and through Woods Hole Oceanographic Institution (WHOI) Ocean and Climate Change Institute (OCCI) and the Clark Foundation. This work was also supported by a UK Natural Environmental Research Council (NERC) PhD studentship (NE/L501566/1) and Scottish Alliance for Geoscience, Environment & Society (SAGES) early career research exchange funding to D. A. S. We thank Hanumant Singh, Laura Stevens, Ken Mankoff, Rebecca Jackson, and Jeff Pietro for useful discussions and data collection.
    Beschreibung: 2019-05-15
    Schlagwort(e): Tidewater glaciers ; Ice‐ocean interactions ; Submarine melting ; Greenland ice sheet ; Fjords ; Plumes
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    Publikationsdatum: 2022-05-26
    Beschreibung: Author Posting. © American Geophysical Union, 2015. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 42 (2015): 1800–1807, doi:10.1002/2015GL063192.
    Beschreibung: Moulins are important conduits for surface meltwater to reach the bed of the Greenland Ice Sheet. It has been proposed that in a warming climate, newly formed moulins associated with the inland migration of supraglacial lakes could introduce surface melt to new regions of the bed, introducing or enhancing sliding there. By examining surface strain rates, we found that the upper limit to where crevasses, and therefore moulins, are likely to form is ~1600 m. This is also roughly the elevation above which lakes do not drain completely. Thus, meltwater above this elevation will largely flow tens of kilometers through surface streams into existing moulins downstream. Furthermore, results from a thermal ice sheet model indicate that the ~1600 m crevassing limit is well below the wet-frozen basal transition (~2000 m). Together, these data sets suggest that new supraglacial lakes will have a limited effect on the inland expansion of melt-induced seasonal acceleration.
    Beschreibung: National Science Foundation grants supported K.P. (CReSIS; ANT-0424589), I.J. (ARC-1023382), S.B.D., and M.D.B. (ARC-1023364). The Polar Program of the Netherlands Organisation for Scientific Research supported J.T.M.L. and M.R.v.d.B.
    Beschreibung: 2015-09-24
    Schlagwort(e): Moulins
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Format: application/pdf
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    Publikationsdatum: 2022-05-26
    Beschreibung: © The Author(s), 2016. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Cryosphere 10 (2016): 417-432, doi:10.5194/tc-10-417-2016.
    Beschreibung: Measurements of near-ice (〈  200 m) hydrography and near-terminus subglacial hydrology are lacking, due in large part to the difficulty in working at the margin of calving glaciers. Here we pair detailed hydrographic and bathymetric measurements collected with an autonomous underwater vehicle as close as 150 m from the ice–ocean interface of the Saqqarliup sermia–Sarqardleq Fjord system, West Greenland, with modeled and observed subglacial discharge locations and magnitudes. We find evidence of two main types of subsurface glacially modified water (GMW) with distinct properties and locations. The two GMW locations also align with modeled runoff discharged at separate locations along the grounded margin corresponding with two prominent subcatchments beneath Saqqarliup sermia. Thus, near-ice observations and subglacial discharge routing indicate that runoff from this glacier occurs primarily at two discrete locations and gives rise to two distinct glacially modified waters. Furthermore, we show that the location with the largest subglacial discharge is associated with the lighter, fresher glacially modified water mass. This is qualitatively consistent with results from an idealized plume model.
    Beschreibung: Support was provided by the National Science Foundation’s Office of Polar Programs (NSF-OPP) through PLR-1418256 to F. Straneo, S. B. Das and A. J. Plueddemann, PLR-1023364 to S. B. Das, and through the Woods Hole Oceanographic Institution Ocean and Climate Change Institute Arctic Research Initiative to F. Straneo, S. B. Das, and A. J. Plueddemann. L. A. Stevens was also supported by a National Science Foundation Graduate Research Fellowship. S. B. Das was also supported by the Woods Hole Oceanographic Institution James E. and Barbara V. Moltz Research Fellowship. M. Morlighem was supported by the National Aeronautics and Space Administration’s (NASA) Cryospheric Sciences Program through NNX15AD55G.
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...