GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2016-08-15
    Description: We present spatiotemporal mass balance trends for the Antarctic Ice Sheet from a statistical inversion of satellite altimetry, gravimetry, and elastic-corrected GPS data for the period 2003–2013. Our method simultaneously determines annual trends in ice dynamics, surface mass balance anomalies, and a time-invariant solution for glacio-isostatic adjustment while remaining largely independent of forward models. We establish that over the period 2003–2013, Antarctica has been losing mass at a rate of −84 ± 22 Gt yr−1, with a sustained negative mean trend of dynamic imbalance of −111 ± 13 Gt yr−1. West Antarctica is the largest contributor with −112 ± 10 Gt yr−1, mainly triggered by high thinning rates of glaciers draining into the Amundsen Sea Embayment. The Antarctic Peninsula has experienced a dramatic increase in mass loss in the last decade, with a mean rate of −28 ± 7 Gt yr−1 and significantly higher values for the most recent years following the destabilization of the Southern Antarctic Peninsula around 2010. The total mass loss is partly compensated by a significant mass gain of 56 ± 18 Gt yr−1 in East Antarctica due to a positive trend of surface mass balance anomalies.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: © The Author(s), 2013. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in The Cryosphere 7 (2013): 1185-1192, doi:10.5194/tc-7-1185-2013.
    Description: Supraglacial lakes play an important role in establishing hydrological connections that allow lubricating seasonal meltwater to reach the base of the Greenland Ice Sheet. Here we use new surface velocity observations to examine the influence of supraglacial lake drainages and surface melt rate on ice flow. We find large, spatially extensive speedups concurrent with times of lake drainage, showing that lakes play a key role in modulating regional ice flow. While surface meltwater is supplied to the bed via a geographically sparse network of moulins, the observed ice-flow enhancement suggests that this meltwater spreads widely over the ice-sheet bed. We also find that the complex spatial pattern of speedup is strongly determined by the combined influence of bed and surface topography on subglacial water flow. Thus, modeling of ice-sheet basal hydrology likely will require knowledge of bed topography resolved at scales (sub-kilometer) far finer than existing data (several km).
    Description: This work was supported jointly by National Science Foundation’s Office of Polar Programs (NSF-OPP) and National Aeronautics and Space Administration’s (NASA) Cryospheric Sciences Program (and through ARC-0520382, ARC-1023382 and NNX10AI33G to I. Joughin; and ARC-0520077, ARC-1023364 and NNX10AI30G to S. B. Das and M. D. Behn). The Natural Sciences and Engineering Research Council of Canada (NSERC) and the Canada Research Chairs Program (CRC) provided support for G. E. Flowers. Support for R. B. Alley was provided by NSF (ANT-0424589 and ARC- 0909335). Contributions by M. A. King were supported by NERC and an Australian Research Council Future Fellowship (project number FT110100207).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-25
    Description: Author Posting. © The Authors, 2008. This is the author's version of the work. It is posted here by permission of American Association for the Advancement of Science for personal use, not for redistribution. The definitive version was published in Science 320 (2008): 778-781, doi:10.1126/science.1153360.
    Description: Surface meltwater that reaches the base of an ice sheet creates a mechanism for the rapid response of ice flow to climate change. The process whereby such a pathway is created through thick, cold ice has not, however, been previously observed. We describe the rapid (〈2 hours) drainage of a large supraglacial lake down 980 m through to the bed of the Greenland Ice Sheet initiated by water-driven fracture propagation evolving into moulin flow. Drainage coincided with increased seismicity, transient acceleration, ice sheet uplift and horizontal displacement. Subsidence and deceleration occurred over the following 24 hours. The short-lived dynamic response suggests an efficient drainage system dispersed the meltwater subglacially. The integrated effect of multiple lake drainages could explain the observed net regional summer ice speedup.
    Description: Support was provided jointly by NSF and NASA through ARC-0520077 (S.B.D., M.P.B., I.M.H.) and ARC- 520382 (I.J.); The WHOI OCCI and Clark Arctic Research Initiative provided additional support to S.B.D., M.D.B., and D.L.; and a NERC (UK) Research Fellowship supported M.A.K.
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2015. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Earth Surface 120 (2015): 1082–1106, doi:10.1002/2014JF003398.
    Description: We analyzed geophone and GPS measurements collected within the ablation zone of the western Greenland Ice Sheet during a ~35 day period of the 2011 melt season to study changes in ice deformation before, during, and after a supraglacial lake drainage event. During rapid lake drainage, ice flow speeds increased to ~400% of winter values, and icequake activity peaked. At times 〉7 days after drainage, this seismicity developed variability over both diurnal and longer periods (~10 days), while coincident ice speeds fell to ~150% of winter values and showed nightly peaks in spatial variability. Approximately 95% of all detected seismicity in the lake basin and its immediate vicinity was triggered by fracture propagation within near-surface ice (〈330 m deep) that generated Rayleigh waves. Icequakes occurring before and during drainage frequently were collocated with the down flow (west) end of the primary hydrofracture through which the lake drained but shifted farther west and outside the lake basin after the drainage. We interpret these results to reveal vertical hydrofracture opening and local uplift during the drainage, followed by enhanced seismicity and ice flow on the downstream side of the lake basin. This region collocates with interferometric synthetic aperture radar-measured speedup in previous years and could reflect the migration path of the meltwater supplied to the bed by the lake. The diurnal seismic signal can be associated with nightly reductions in surface melt input that increase effective basal pressure and traction, thereby promoting elevated strain in the surficial ice.
    Description: Research by J. Carmichael was supported by a NASA NESSF Fellowship grant NNX08AU82H and NSF grant ANT-0424589. The fieldwork and additional analyses were supported by the National Science Foundation's Office of Polar Programs (NSF-OPP) through ARC-1023382, awarded to I. Joughin, and ARC-1023364, awarded to S. B. Das and M. D. Behn. Matt King is a recipient of an Australian Research Council Future Fellowship (project number FT110100207).
    Description: 2015-12-25
    Keywords: Western Greenland Ice Sheet ; Icequakes ; Statistical signal processing ; GPS ; Supraglacial lakes ; Seismic threshold monitoring
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2005. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 32 (2005): L22501, doi:10.1029/2005GL024319.
    Description: Earlier observations indicated that Whillans Ice Stream slowed from 1973 to 1997. We collected new GPS observations of the ice stream's speed in 2003 and 2004. These data show that the ice stream is continuing to decelerate at rates of about 0.6%/yr2, with faster rates near the grounding line. Our data also indicate that the deceleration extends over the full width of the ice plain. Extrapolation of the deceleration trend suggests the ice stream could stagnate sometime between the middle of the 21st and 22nd Centuries.
    Description: This work was supported by the National Science Foundation (NSF-OPP-0229659). IJ’s contribution was supported by the Cryospheric Sciences Program of NASA’s Earth Science Enterprise.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...